Sensitivity analyses in longitudinal clinical trials via distributional imputation.

Longitudinal clinical trial distributional imputation missing data multiple imputation sensitivity analysis

Journal

Statistical methods in medical research
ISSN: 1477-0334
Titre abrégé: Stat Methods Med Res
Pays: England
ID NLM: 9212457

Informations de publication

Date de publication:
01 2023
Historique:
pubmed: 8 11 2022
medline: 5 1 2023
entrez: 7 11 2022
Statut: ppublish

Résumé

Missing data is inevitable in longitudinal clinical trials. Conventionally, the missing at random assumption is assumed to handle missingness, which however is unverifiable empirically. Thus, sensitivity analyses are critically important to assess the robustness of the study conclusions against untestable assumptions. Toward this end, regulatory agencies and the pharmaceutical industry use sensitivity models such as return-to-baseline, control-based, and washout imputation, following the ICH E9(R1) guidance. Multiple imputation is popular in sensitivity analyses; however, it may be inefficient and result in an unsatisfying interval estimation by Rubin's combining rule. We propose distributional imputation in sensitivity analysis, which imputes each missing value by samples from its target imputation model given the observed data. Drawn on the idea of Monte Carlo integration, the distributional imputation estimator solves the mean estimating equations of the imputed dataset. It is fully efficient with theoretical guarantees. Moreover, we propose weighted bootstrap to obtain a consistent variance estimator, taking into account the variabilities due to model parameter estimation and target parameter estimation. The superiority of the distributional imputation framework is validated in the simulation study and an antidepressant longitudinal clinical trial.

Identifiants

pubmed: 36341772
doi: 10.1177/09622802221135251
pmc: PMC10950063
mid: NIHMS1975616
doi:

Substances chimiques

Antidepressive Agents 0
Benzenesulfonates 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

181-194

Subventions

Organisme : NIA NIH HHS
ID : R01 AG066883
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES031651
Pays : United States

Références

Biometrics. 1996 Mar;52(1):98-111
pubmed: 8934587
J Biopharm Stat. 2013;23(6):1352-71
pubmed: 24138436
Ther Innov Regul Sci. 2020 Mar;54(2):353-364
pubmed: 32072593
Stat Methods Med Res. 2019 Jan;28(1):289-308
pubmed: 28747095
Biometrics. 2012 Sep;68(3):697-706
pubmed: 22150612
J Biopharm Stat. 2016;26(5):924-36
pubmed: 26418282
Scand Stat Theory Appl. 2023 Mar;50(1):235-265
pubmed: 36844478
Pharm Stat. 2017 Sep;16(5):378-392
pubmed: 28631331
Stat Med. 2020 Sep 20;39(21):2815-2842
pubmed: 32419182
Am J Epidemiol. 2004 Aug 15;160(4):384-92
pubmed: 15286024
Stat Med. 2018 Apr 30;37(9):1467-1481
pubmed: 29333672
Diabetes Obes Metab. 2019 Apr;21(4):781-790
pubmed: 30393950
Biometrics. 2023 Mar;79(1):230-240
pubmed: 34453313
Stat Methods Med Res. 2016 Dec;25(6):2541-2557
pubmed: 24682265
N Engl J Med. 2012 Oct 4;367(14):1355-60
pubmed: 23034025
Ther Innov Regul Sci. 2014 Jan;48(1):68-80
pubmed: 30231419

Auteurs

Siyi Liu (S)

Department of Statistics, North Carolina State University, Raleigh, NC, USA.

Shu Yang (S)

Department of Statistics, North Carolina State University, Raleigh, NC, USA.

Yilong Zhang (Y)

Merck & Co., Inc., Kenilworth, NJ, USA.

Guanghan Frank Liu (GF)

Merck & Co., Inc., Kenilworth, NJ, USA.

Articles similaires

Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation
Humans Algorithms Software Artificial Intelligence Computer Simulation
Humans Robotic Surgical Procedures Clinical Competence Male Female

A computational model for bacteriophage ϕX174 gene expression.

Alexis M Hill, Tanvi A Ingle, Claus O Wilke
1.00
Gene Expression Regulation, Viral Promoter Regions, Genetic Bacteriophage phi X 174 Computer Simulation Models, Genetic

Classifications MeSH