Magnetic NH
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 11 2022
08 11 2022
Historique:
received:
21
08
2022
accepted:
28
09
2022
entrez:
8
11
2022
pubmed:
9
11
2022
medline:
11
11
2022
Statut:
epublish
Résumé
In the present study, the magnetic NH
Identifiants
pubmed: 36347864
doi: 10.1038/s41598-022-21551-3
pii: 10.1038/s41598-022-21551-3
pmc: PMC9643464
doi:
Substances chimiques
Chitosan
9012-76-4
MIL-101
0
Azithromycin
83905-01-5
Water Pollutants, Chemical
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18990Subventions
Organisme : Zahedan University of Medical Sciences
ID : 10588
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Yuan, Q. et al. Migration, transformation and removal of macrolide antibiotics in the environment: A review. Environ. Sci. Pollut. Res. 29, 1–18 (2022).
Naraginti, S., Yu, Y.-Y., Fang, Z. & Yong, Y.-C. Visible light degradation of macrolide antibiotic azithromycin by novel ZrO2/Ag@ TiO
Tiwari, B. et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 224, 1–12 (2017).
pubmed: 27889353
Spielmeyer, A. Occurrence and fate of antibiotics in manure during manure treatments: A short review. Sustain. Chem. Pharm. 9, 76–86 (2018).
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G. & Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93, 1268–1287 (2013).
pubmed: 24025536
Polianciuc, S. I., Gurzău, A. E., Kiss, B., Ştefan, M. G. & Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 93, 231 (2020).
pubmed: 32832887
pmcid: 7418837
Jelić, A., Gros, M., Petrović, M., Ginebreda, A. & Barceló, D. Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. In Emerging and Priority Pollutants in Rivers, 1–23 (2012).
Almeida, A. et al. Human and veterinary antibiotics used in Portugal—A ranking for ecosurveillance. Toxics 2, 188–225 (2014).
Bhushan, P., Gautam, D., Kumar, P., Shukla, S. & Mohan, D. An overview of human health risk from opium alkaloids and related pharmaceutical products pollution in aquatic ecosystems. In Ecological Significance of River Ecosystems, 1–14 (2022).
Eniola, J. O., Kumar, R., Barakat, M. & Rashid, J. A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment. J. Clean. Prod. 356, 131826 (2022).
Zdarta, J., Meyer, A. S., Jesionowski, T. & Pinelo, M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol. Adv. 37, 107401 (2019).
pubmed: 31128206
Mesdaghinia, A. et al. Removal of phthalate esters (PAEs) by zeolite/Fe
Dehghankar, M., Mohammadi, T., Moghadam, M. T. & Tofighy, M. A. Metal-organic framework/zeolite nanocrystal/polyvinylidene fluoride composite ultrafiltration membranes with flux/antifouling advantages. Mater. Chem. Phys. 260, 124128 (2021).
Van Tran, T. et al. High performance of Mn2 (BDC) 2 (DMF) 2-derived MnO@ C nanocomposite as superior remediator for a series of emergent antibiotics. J. Mol. Liq. 308, 113038 (2020).
Kuppler, R. J. et al. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253, 3042–3066 (2009).
Shah, S. S. A. et al. Recent advances on oxygen reduction electrocatalysis: Correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Appl. Catal. B 268, 118570 (2020).
Van Tran, T. et al. Hexagonal Fe-based MIL-88B nanocrystals with NH2 functional groups accelerating oxytetracycline capture via hydrogen bonding. Surf. Interfaces 20, 100605 (2020).
Wang, Y., Wang, K., Lin, J., Xiao, L. & Wang, X. The preparation of nano-MIL-101 (Fe)@ chitosan hybrid sponge and its rapid and efficient adsorption to anionic dyes. Int. J. Biol. Macromol. 165, 2684–2692 (2020).
pubmed: 33086107
Xiong, P., Zhang, H., Li, G., Liao, C. & Jiang, G. Adsorption removal of ibuprofen and naproxen from aqueous solution with Cu-doped Mil-101 (Fe). Sci. Total Environ. 797, 149179 (2021).
pubmed: 34311351
Vo, T. K., Trinh, T. P., Nguyen, V. C. & Kim, J. Facile synthesis of graphite oxide/MIL-101 (Cr) hybrid composites for enhanced adsorption performance towards industrial toxic dyes. J. Ind. Eng. Chem. 95, 224–234 (2021).
Zhou, Q. & Liu, G. Urea-functionalized MIL-101 (Cr)@ AC as a new adsorbent to remove sulfacetamide in wastewater treatment. Ind. Eng. Chem. Res. 59, 12056–12064 (2020).
Li, Z. et al. Efficiently removal of ciprofloxacin from aqueous solution by MIL-101 (Cr)-HSO 3: The enhanced electrostatic interaction. J. Porous Mater. 27, 189–204 (2020).
Li, X. et al. Water contaminant elimination based on metal–organic frameworks and perspective on their industrial applications. ACS Sustain. Chem. Eng. 7, 4548–4563 (2019).
Nasrollahzadeh, M., Shafiei, N. & Orooji, Y. Magnetic chitosan stabilized Cu (II)-tetrazole complex: An effective nanocatalyst for the synthesis of 3-imino-2-phenylisoindolin-1-one derivatives under ultrasound irradiation. Sci. Rep. 12, 1–13 (2022).
Nasrollahzadeh, M., Sajjadi, M., Iravani, S. & Varma, R. S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohyd. Polym. 251, 116986 (2021).
Hemmati, S., Heravi, M. M., Karmakar, B. & Veisi, H. In situ decoration of Au NPs over polydopamine encapsulated GO/Fe
El-Sharkawy, R. M., Swelim, M. A. & Hamdy, G. B. Aspergillus tamarii mediated green synthesis of magnetic chitosan beads for sustainable remediation of wastewater contaminants. Sci. Rep. 12, 1–15 (2022).
Ma, X.-H., Yang, Z., Yao, Z.-K., Xu, Z.-L. & Tang, C. Y. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. J. Membr. Sci. 525, 269–276 (2017).
Moazzen, M. et al. Multi-walled carbon nanotubes modified with iron oxide and silver nanoparticles (MWCNT-Fe
Azari, A., Nabizadeh, R., Mahvi, A. H. & Nasseri, S. Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: Adsorption modelling and process optimisation by central composite face-central design. Int. J. Environ. Anal. Chem. 1–21 (2021).
Van Tran, T. et al. Effect of thermolysis condition on characteristics and nonsteroidal anti-inflammatory drugs (NSAIDs) absorbability of Fe-MIL-88B-derived mesoporous carbons. J. Environ. Chem. Eng. 7, 103356 (2019).
Tang, Z. et al. Synthesis of SiBNC-Al ceramics with different aluminum contents via polymer-derived method. J. Am. Ceram. Soc. 105, 2914–2924 (2022).
Aljaddua, H. I., Alhumaimess, M. S. & Hassan, H. M. CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction. Arab. J. Chem. 15, 103588 (2022).
Guan, Y., Xia, M., Wang, X., Cao, W. & Marchetti, A. Water-based preparation of nano-sized NH2-MIL-53 (Al) frameworks for enhanced dye removal. Inorg. Chim. Acta 484, 180–184 (2019).
Van Tran, T. et al. Recyclable Fe
Imanipoor, J., Mohammadi, M. & Dinari, M. Evaluating the performance of L-methionine modified montmorillonite K10 and 3-aminopropyltriethoxysilane functionalized magnesium phyllosilicate organoclays for adsorptive removal of azithromycin from water. Sep. Purif. Technol. 275, 119256 (2021).
de Sousa, D. N. R. et al. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 205, 137–146 (2018).
pubmed: 29689527
Li, X. et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 235, 116213 (2020).
Dehghani, M. H., Salari, M., Karri, R. R., Hamidi, F. & Bahadori, R. Process modeling of municipal solid waste compost ash for reactive red 198 dye adsorption from wastewater using data driven approaches. Sci. Rep. 11, 1–20 (2021).
Wahab, M. et al. Adsorption-membrane hybrid approach for the removal of azithromycin from water: An attempt to minimize drug resistance problem. Water 13, 1969 (2021).
Saadi, Z., Fazaeli, R., Vafajoo, L., Naser, I. & Mohammadi, G. Promotion of clinoptilolite adsorption for azithromycin antibiotic by Tween 80 and Triton X-100 surface modifiers under batch and fixed-bed processes. Chem. Eng. Commun. 208, 328–348 (2021).
Mahmoudian, M. H., Fazlzadeh, M., Niari, M. H., Azari, A. & Lima, E. C. A novel silica supported chitosan/glutaraldehyde as an efficient sorbent in solid phase extraction coupling with HPLC for the determination of Penicillin G from water and wastewater samples. Arab. J. Chem. 13, 7147–7159 (2020).
Balarak, D., Mahvi, A. H., Shahbaksh, S., Wahab, M. A. & Abdala, A. Adsorptive removal of azithromycin antibiotic from aqueous solution by azolla filiculoides-based activated porous carbon. Nanomaterials 11, 3281 (2021).
pubmed: 34947630
pmcid: 8709189
Nguyen, N. T., Dao, T. H., Truong, T. T., Nguyen, T. M. T. & Pham, T. D. Adsorption characteristic of ciprofloxacin antibiotic onto synthesized alpha alumina nanoparticles with surface modification by polyanion. J. Mol. Liq. 309, 113150 (2020).
Ali, M. M. M. & Ahmed, M. J. Adsorption behavior of doxycycline antibiotic on NaY zeolite from wheat (Triticum aestivum) straws ash. J. Taiwan Inst. Chem. Eng. 81, 218–224 (2017).
Dovi, E. et al. Functionalization of walnut shell by grafting amine groups to enhance the adsorption of Congo red from water in batch and fixed-bed column modes. J. Environ. Chem. Eng. 9, 106301 (2021).
Davoodi, S., Dahrazma, B., Goudarzi, N. & Gorji, H. G. Adsorptive removal of azithromycin from aqueous solutions using raw and saponin-modified nano diatomite. Water Sci. Technol. 80, 939–949 (2019).
pubmed: 31746801
Sobhan Ardakani, S., Cheraghi, M., Jafari, A. & Zandipak, R. PECVD synthesis of ZnO/Si thin film as a novel adsorbent for removal of azithromycin from water samples. Int. J. Environ. Anal. Chem. 1–18 (2020).
Van Tran, T. et al. Response surface methodology-optimized removal of chloramphenicol pharmaceutical from wastewater using Cu3 (BTC) 2-derived porous carbon as an efficient adsorbent. C. R. Chim. 22, 794–803 (2019).
Saber, W. I. et al. Rotatable central composite design versus artificial neural network for modeling biosorption of Cr6+ by the immobilized Pseudomonas alcaliphila NEWG-2. Sci. Rep. 11, 1–15 (2021).
Rezaei, M., Pourang, N. & Moradi, A. M. Removal of lead from aqueous solutions using three biosorbents of aquatic origin with the emphasis on the affective factors. Sci. Rep. 12, 1–20 (2022).
Azari, A., Nabizadeh, R., Nasseri, S., Mahvi, A. H. & Mesdaghinia, A. R. Comprehensive systematic review and meta-analysis of dyes adsorption by carbon-based adsorbent materials: Classification and analysis of last decade studies. Chemosphere 250, 126238 (2020).
pubmed: 32092572
Liu, X. et al. Banana stem and leaf biochar as an effective adsorbent for cadmium and lead in aqueous solution. Sci. Rep. 12, 1–14 (2022).
Selambakkannu, S. et al. Modification of radiation grafted banana trunk fibers for adsorption of anionic dyes. Fibers Polym. 20, 2556–2569 (2019).
Zaib, Q. & Kyung, D. Optimized removal of hexavalent chromium from water using spent tea leaves treated with ascorbic acid. Sci. Rep. 12, 1–14 (2022).
Maniyazagan, M., Chakraborty, S., Pérez-Sánchez, H. & Stalin, T. Encapsulation of triclosan within 2-hydroxypropyl-β-cyclodextrin cavity and its application in the chemisorption of rhodamine B dye. J. Mol. Liq. 282, 235–243 (2019).
Ali, I., Khan, T. A. & Hussain, I. Treatment and remediation methods for arsenic removal from the ground water. Int. J. Environ. Eng. 3, 48–71 (2011).
Mirzaei, N. et al. Modified natural zeolite using ammonium quaternary based material for Acid red 18 removal from aqueous solution. J. Environ. Chem. Eng. 5, 3151–3160 (2017).
Abdelkhalek, A., El-Latif, M. A., Ibrahim, H., Hamad, H. & Showman, M. Controlled synthesis of graphene oxide/silica hybrid nanocomposites for removal of aromatic pollutants in water. Sci. Rep. 12, 1–22 (2022).
Shao, S., Ma, B., Chen, Y., Zhang, W. & Wang, C. Behavior and mechanism of fluoride removal from aqueous solutions by using synthesized CaSO
Alnajjar, M. et al. Silica-alumina composite as an effective adsorbent for the removal of metformin from water. J. Environ. Chem. Eng. 7, 102994 (2019).
Azari, A., Nabizadeh, R., Mahvi, A. H. & Nasseri, S. Integrated Fuzzy AHP-TOPSIS for selecting the best color removal process using carbon-based adsorbent materials: Multi-criteria decision making vs. systematic review approaches and modeling of textile wastewater treatment in real conditions. Int. J. Environ. Anal. Chem. 1–16 (2020).
Hadavifar, M., Bahramifar, N., Younesi, H. & Li, Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem. Eng. J. 237, 217–228 (2014).
Zeng, Z.-W. et al. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures. Front. Chem. 6, 80 (2018).
pubmed: 29637067
pmcid: 5880934
Upoma, B. P. et al. A fast adsorption of azithromycin on waste-product-derived graphene oxide induced by H-bonding and electrostatic interactions. ACS Omega 7, 29655–29665 (2022).
pubmed: 36061663
pmcid: 9434760