Spatial genomics maps the structure, nature and evolution of cancer clones.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
21
04
2021
accepted:
07
10
2022
pubmed:
10
11
2022
medline:
22
11
2022
entrez:
9
11
2022
Statut:
ppublish
Résumé
Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour
Identifiants
pubmed: 36352222
doi: 10.1038/s41586-022-05425-2
pii: 10.1038/s41586-022-05425-2
pmc: PMC9668746
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
594-602Subventions
Organisme : NCI NIH HHS
ID : U54 CA225088
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA168504
Pays : United States
Organisme : Wellcome Trust
ID : 108413/A/15/D
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 214584/Z/18/Z
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).
pubmed: 32025013
pmcid: 7054212
doi: 10.1038/s41586-019-1907-7
Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).
pubmed: 26618723
doi: 10.1038/nm.3984
Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).
pubmed: 26099045
pmcid: 4500826
doi: 10.1038/nm.3886
Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).
pubmed: 22258609
pmcid: 3367003
doi: 10.1038/nature10762
McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).
pubmed: 28187284
doi: 10.1016/j.cell.2017.01.018
Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).
pubmed: 959840
doi: 10.1126/science.959840
Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021).
pubmed: 33831375
pmcid: 8054914
doi: 10.1016/j.cell.2021.03.009
Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).
pubmed: 22608083
pmcid: 3428864
doi: 10.1016/j.cell.2012.04.023
Gaglia, G. et al. Temporal and spatial topography of cell proliferation in cancer. Nat. Cell Biol. 24, 316–326 (2022).
pubmed: 35292783
pmcid: 8959396
doi: 10.1038/s41556-022-00860-9
Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310.e18 (2022).
pubmed: 35063072
pmcid: 8792442
doi: 10.1016/j.cell.2021.12.023
Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).
pubmed: 35290801
doi: 10.1016/j.cell.2022.02.015
Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184.e7 (2017).
pubmed: 28810143
pmcid: 5559645
doi: 10.1016/j.ccell.2017.07.005
Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).
pubmed: 16565718
doi: 10.1038/ng1768
Jamal-Hanjani, M. et al. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).
pubmed: 28445112
doi: 10.1056/NEJMoa1616288
Janiszewska, M. et al. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat. Cell Biol. 21, 879–888 (2019).
pubmed: 31263265
pmcid: 6609451
doi: 10.1038/s41556-019-0346-x
Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).
pubmed: 25409150
doi: 10.1038/nature13948
Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).
pubmed: 18337506
pmcid: 2393770
doi: 10.1073/pnas.0712345105
Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).
pubmed: 19812674
doi: 10.1038/nature08489
Casasent, A. K. et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172, 205–217.e12 (2018).
pubmed: 29307488
pmcid: 5766405
doi: 10.1016/j.cell.2017.12.007
Tarabichi, M. et al. A practical guide to cancer subclonal reconstruction from DNA sequencing. Nat. Methods 18, 144–155 (2021).
pubmed: 33398189
pmcid: 7867630
doi: 10.1038/s41592-020-01013-2
Shen, C. Y. et al. Genome-wide search for loss of heterozygosity using laser capture microdissected tissue of breast carcinoma: an implication for mutator phenotype and breast cancer pathogenesis. Cancer Res. 60, 3884–3892 (2000).
pubmed: 10919664
Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).
pubmed: 34912115
doi: 10.1038/s41586-021-04217-4
Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).
pubmed: 35948708
pmcid: 9365699
doi: 10.1038/s41586-022-05023-2
Janiszewska, M. et al. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat. Genet. 47, 1212–1219 (2015).
pubmed: 26301495
pmcid: 4589505
doi: 10.1038/ng.3391
Larsson, C., Grundberg, I., Söderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010).
pubmed: 20383134
doi: 10.1038/nmeth.1448
Grundberg, I. et al. In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics. Oncotarget 4, 2407–2418 (2013).
pubmed: 24280411
pmcid: 3926836
doi: 10.18632/oncotarget.1527
Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).
pubmed: 23852452
doi: 10.1038/nmeth.2563
Baker, A.-M. et al. Robust RNA-based in situ mutation detection delineates colorectal cancer subclonal evolution. Nat. Commun. 8, 1998 (2017).
pubmed: 29222441
pmcid: 5722928
doi: 10.1038/s41467-017-02295-5
Cowell, C. F. et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol. Oncol. 7, 859–869 (2013).
pubmed: 23890733
pmcid: 5528459
doi: 10.1016/j.molonc.2013.07.005
Svedlund, J. et al. Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine 48, 212–223 (2019).
pubmed: 31526717
pmcid: 6838368
doi: 10.1016/j.ebiom.2019.09.009
Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).
pubmed: 34493872
pmcid: 9044823
doi: 10.1038/s41588-021-00911-1
Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).
pubmed: 33318691
doi: 10.1038/s41596-020-00437-6
Gataric, M. et al. PoSTcode: probabilistic image-based spatial transcriptomics decoder. Preprint at https://doi.org/10.1101/2021.10.12.464086 (2021).
Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).
pubmed: 35404441
pmcid: 9167783
doi: 10.1158/2159-8290.CD-21-1357
Kole, A. J. et al. Overall survival is improved when DCIS accompanies invasive breast cancer. Sci. Rep. 9, 9934 (2019).
pubmed: 31289308
pmcid: 6616329
doi: 10.1038/s41598-019-46309-2
Going, J. J. & Moffat, D. F. Escaping from flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions. J. Pathol. 203, 538–544 (2004).
pubmed: 15095476
doi: 10.1002/path.1556
Schnitt, S. J. & Collins, L. C. Biopsy Interpretation of the Breast (Lippincott Williams & Wilkins, 2009).
Pinder, S. E. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod. Pathol. 23, S8–S13 (2010).
pubmed: 20436505
doi: 10.1038/modpathol.2010.40
Thomson, J. Z. et al. Growth pattern of ductal carcinoma in situ (DCIS): a retrospective analysis based on mammographic findings. Br. J. Cancer 85, 225–227 (2001).
pubmed: 11461081
pmcid: 2364049
doi: 10.1054/bjoc.2001.1877
Solin, L. J. et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J. Natl Cancer Inst. 105, 701–710 (2013).
pubmed: 23641039
pmcid: 3653823
doi: 10.1093/jnci/djt067
Jatoi, I., Hilsenbeck, S. G., Clark, G. M. & Osborne, C. K. Significance of axillary lymph node metastasis in primary breast cancer. J. Clin. Oncol. 17, 2334–2340 (1999)
Sereesongsaeng, N., McDowell, S. H., Burrows, J. F., Scott, C. J. & Burden, R. E. Cathepsin V suppresses GATA3 protein expression in luminal A breast cancer. Breast Cancer Res. 22, 139 (2020).
pubmed: 33298139
pmcid: 7726886
doi: 10.1186/s13058-020-01376-6
Kwon, M. J. et al. CD24 overexpression is associated with poor prognosis in luminal A and triple-negative breast cancer. PLoS ONE 10, e0139112 (2015).
pubmed: 26444008
pmcid: 4596701
doi: 10.1371/journal.pone.0139112
Li, X.-P. et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget 6, 22880–22889 (2015).
pubmed: 26078356
pmcid: 4673206
doi: 10.18632/oncotarget.4412
Cairns, R. A. & Hill, R. P. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res. 64, 2054–2061 (2004).
pubmed: 15026343
doi: 10.1158/0008-5472.CAN-03-3196
Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).
pubmed: 25665006
pmcid: 4575589
doi: 10.1038/ng.3214
Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).
pubmed: 31501547
pmcid: 6765407
doi: 10.1038/s41592-019-0548-y
Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 48, e112 (2020).
pubmed: 32990747
pmcid: 7641728
doi: 10.1093/nar/gkaa792
Lee, H., Marco Salas, S., Gyllborg, D. & Nilsson, M. Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue. Sci. Rep. 12, 7976 (2022).
pubmed: 35562352
pmcid: 9106737
doi: 10.1038/s41598-022-11534-9
Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35, 125–129 (1973).
doi: 10.2307/4444260