Association of - 717 A > G (rs2794521) CRP polymorphism with high cardiovascular risk by C-reactive protein in systemic lupus erythematosus patients.
Humans
Female
Genetic Predisposition to Disease
C-Reactive Protein
/ metabolism
Cardiovascular Diseases
/ etiology
Cross-Sectional Studies
Risk Factors
Genotype
Polymorphism, Single Nucleotide
Heart Disease Risk Factors
Lupus Erythematosus, Systemic
/ complications
Gene Frequency
Case-Control Studies
C-reactive protein
CRP polymorphism
Cardiovascular risk
Systemic lupus erythematosus
Journal
Clinical rheumatology
ISSN: 1434-9949
Titre abrégé: Clin Rheumatol
Pays: Germany
ID NLM: 8211469
Informations de publication
Date de publication:
Mar 2023
Mar 2023
Historique:
received:
10
05
2022
accepted:
28
10
2022
revised:
07
10
2022
pubmed:
11
11
2022
medline:
22
2
2023
entrez:
10
11
2022
Statut:
ppublish
Résumé
Systemic lupus erythematosus (SLE) is an autoimmune disease where genetic factors have been related to SLE susceptibility and disease severity. CRP polymorphisms have been associated with high C-reactive protein (CRP) serum levels, cardiovascular disease (CVD), and high clinical disease activity in SLE patients; however, the evidence is still inconclusive. This study was aimed to assess the association of the - 717 A > G, - 409 G > A, + 1444 C > T, and + 1846 C > T CRP polymorphisms with genetic susceptibility, clinical disease activity, and CVD risk in Mexican-mestizo SLE patients. A comparative cross-sectional study was conducted on 369 unrelated women: 183 with SLE according to the 1997 SLE-ACR criteria and 186 healthy subjects (HS). The clinical disease activity was assessed by the Mex-SLEDAI score; CRP and lipid profile were quantified by turbidimetry and colorimetric-enzymatic assays, respectively. The CRP polymorphisms genotyping was carried out by allelic discrimination. SLE patients with - 717 AA genotype had higher CRP serum levels than SLE carriers of AG and GG genotypes (AA = 5 mg/L vs. AG = 3.2 mg/L vs. GG = 2.4 mg/L; p = 0.01), and the AA genotype was associated with high CVD risk by CRP in SLE patients (OR = 3; CI: 1.2-7.6; p < 0.01). The - 717 A > G CRP polymorphism is a risk factor for high CRP levels and high CVD risk in Mexican-mestizo SLE patients. Key Points • Cardiovascular disease is one of the major causes of death in SLE patients due to the higher prevalence of traditional and non-traditional cardiovascular risk factors. • C-reactive protein is a liver-derived acute-phase protein suggested as one powerful independent risk predictor factor for cardiovascular disease. • Single nucleotide polymorphisms in CRP have been suggested as genetic susceptibility factors that could modify the SLE pathophysiology outcomes. • Mexican-mestizo SLE patients carrying the -717 A>G CRP AA genotype had 3-fold high cardiovascular disease risk than SLE patients with AG or GG genotypes.
Identifiants
pubmed: 36355253
doi: 10.1007/s10067-022-06430-6
pii: 10.1007/s10067-022-06430-6
doi:
Substances chimiques
C-Reactive Protein
9007-41-4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
761-772Informations de copyright
© 2022. The Author(s), under exclusive licence to International League of Associations for Rheumatology (ILAR).
Références
Pan L, Lu M-P, Wang J-H et al (2020) Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr 16:19–30. https://doi.org/10.1007/s12519-019-00229-3
doi: 10.1007/s12519-019-00229-3
pubmed: 30796732
Giannelou M, Mavragani CP (2017) Cardiovascular disease in systemic lupus erythematosus: a comprehensive update. J Autoimmun 82:1–12. https://doi.org/10.1016/j.jaut.2017.05.008
doi: 10.1016/j.jaut.2017.05.008
pubmed: 28606749
Enocsson H, Karlsson J, Li H-Y et al (2021) The complex role of C-reactive protein in systemic lupus erythematosus. JCM 10:5837. https://doi.org/10.3390/jcm10245837
doi: 10.3390/jcm10245837
pubmed: 34945133
pmcid: 8708507
Boncler M, Wu Y, Watala C (2019) The multiple faces of C-reactive protein—physiological and pathophysiological implications in cardiovascular disease. Molecules 24:2062. https://doi.org/10.3390/molecules24112062
doi: 10.3390/molecules24112062
pubmed: 31151201
pmcid: 6600390
(2010) C-reactive protein concentration and risk of coronary heart 605 disease, stroke, and mortality: an individual participant meta-analysis. 375:9. https://doi.org/10.1016/S0140-6736(09)61717-7
Salomão RG, de Carvalho LM, Izumi C et al (2018) Homocysteine, folate, hs-C-reactive protein, tumor necrosis factor alpha and inflammatory proteins: are these biomarkers related to nutritional status and cardiovascular risk in childhood-onset systemic lupus erythematosus? Pediatr Rheumatol 16:4. https://doi.org/10.1186/s12969-017-0220-y
doi: 10.1186/s12969-017-0220-y
Pocovi-Gerardino G, Correa-Rodríguez M, Rubio J-LC et al (2020) The relationships of high-sensitivity C-reactive protein and homocysteine levels with disease activity, damage accrual, and cardiovascular risk in systemic lupus erythematosus. Biol Res Nurs 22:169–177. https://doi.org/10.1177/1099800419889192
doi: 10.1177/1099800419889192
pubmed: 31763930
Meyer O (2010) Anti-CRP antibodies in systemic lupus erythematosus. Joint Bone Spine 77:384–389. https://doi.org/10.1016/j.jbspin.2010.04.010
doi: 10.1016/j.jbspin.2010.04.010
pubmed: 20627790
Pesqueda-Cendejas K, Parra-Rojas I, Mora-García PE et al (2022) CRP serum levels are associated with high cardiometabolic risk and clinical disease activity in systemic lupus erythematosus patients. JCM 11:1849. https://doi.org/10.3390/jcm11071849
doi: 10.3390/jcm11071849
pubmed: 35407457
pmcid: 8999239
Rullo OJ, Tsao BP (2013) Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis 72:ii56–ii61. https://doi.org/10.1136/annrheumdis-2012-202351
doi: 10.1136/annrheumdis-2012-202351
pubmed: 23253915
Jonsen A, Gunnarsson I, Gullstrand B et al (2007) Association between SLE nephritis and polymorphic variants of the CRP and Fc RIIIa genes. Rheumatology 46:1417–1421. https://doi.org/10.1093/rheumatology/kem167
doi: 10.1093/rheumatology/kem167
pubmed: 17596285
Delongui F, Lozovoy MAB, Iriyoda TMV et al (2017) C-reactive protein +1444CT (rs1130864) genetic polymorphism is associated with the susceptibility to systemic lupus erythematosus and C-reactive protein levels. Clin Rheumatol 36:1779–1788. https://doi.org/10.1007/s10067-017-3695-5
doi: 10.1007/s10067-017-3695-5
pubmed: 28567557
Martínez-Calleja A, Quiróz-Vargas I, Parra-Rojas I et al (2012) Haplotypes in the CRP gene associated with increased BMI and levels of CRP in subjects with type 2 diabetes or obesity from southwestern Mexico. Exp Diabetes Res 2012:1–7. https://doi.org/10.1155/2012/982683
doi: 10.1155/2012/982683
Flores-Alfaro E, Fernández-Tilapa G, Salazar-Martínez E et al (2012) Common variants in the CRP gene are associated with serum C-reactive protein levels and body mass index in healthy individuals in Mexico. Genet Mol Res 11:2258–2267. https://doi.org/10.4238/2012.May.14.5
doi: 10.4238/2012.May.14.5
pubmed: 22614460
Akbarzadeh Najar R, Ghaderian SMH, Tabatabaei Panah AS (2012) C-reactive protein (CRP) gene polymorphisms: implication in CRP plasma levels and susceptibility to acute myocardial infarction. Mol Biol Rep 39:3705–3712. https://doi.org/10.1007/s11033-011-1145-z
doi: 10.1007/s11033-011-1145-z
pubmed: 21720757
Paik JK, Kim OY, Koh SJ et al (2007) Additive effect of interleukin-6 and C-reactive protein (CRP) single nucleotide polymorphism on serum CRP concentration and other cardiovascular risk factors. Clin Chim Acta 380:68–74. https://doi.org/10.1016/j.cca.2006.11.011
doi: 10.1016/j.cca.2006.11.011
pubmed: 17335789
Atisha-Fregoso Y, Lima G, Carrillo-Maravilla E et al (2018) C-reactive protein (CRP) polymorphisms and haplotypes are associated with SLE susceptibility and activity but not with serum CRP levels in Mexican population. Clin Rheumatol 37:1817–1824. https://doi.org/10.1007/s10067-018-4059-5
doi: 10.1007/s10067-018-4059-5
pubmed: 29556849
Enocsson H, Gullstrand B, Eloranta M-L et al (2021) C-reactive protein levels in systemic lupus erythematosus are modulated by the interferon gene signature and CRP gene polymorphism rs1205. Front Immunol 11:622326. https://doi.org/10.3389/fimmu.2020.622326
doi: 10.3389/fimmu.2020.622326
pubmed: 33584722
pmcid: 7876312
Hage FG, Szalai AJ (2007) C-reactive protein gene polymorphisms, C-reactive protein blood levels, and cardiovascular disease risk. J Am Coll Cardiol 50:1115–1122. https://doi.org/10.1016/j.jacc.2007.06.012
doi: 10.1016/j.jacc.2007.06.012
pubmed: 17868801
Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725. https://doi.org/10.1002/art.1780400928
doi: 10.1002/art.1780400928
pubmed: 9324032
Ruiz-Quezada S, Vázquez-Del Mercado M, Parra-Rojas I et al (2004) Genotype and allele frequency of PAI-1 promoter polymorphism in healthy subjects from the west of Mexico. Association with biochemical and hematological parameters. Ann Genet 47:155–162. https://doi.org/10.1016/j.anngen.2003.12.001
doi: 10.1016/j.anngen.2003.12.001
pubmed: 15183748
Uribe AG, Vilá LM, McGwin G et al (2004) The Systemic Lupus Activity Measure-revised, the Mexican Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus. J Rheumatol 31:1934–1940
pubmed: 15468356
Gladman D, Ginzler E, Goldsmith C et al (1996) The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 39:363–369. https://doi.org/10.1002/art.1780390303
doi: 10.1002/art.1780390303
pubmed: 8607884
World Health Organization (2011) Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8–11. https://www.who.int/publications/i/item/9789241501491
World Health Organization (2000) Obesity: Preventing and managing the global epidemic, In: WHO technical report series, Geneva 894. http://www.who.int/entity/nutrition/publications/obesity/WHO_TRS_894/en/index.html
Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis: waist-to-height ratio as a screening tool. Obes Rev 13:275–286. https://doi.org/10.1111/j.1467-789X.2011.00952.x
doi: 10.1111/j.1467-789X.2011.00952.x
pubmed: 22106927
Wakabayashi I, Daimon T (2015) The “cardiometabolic index” as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin Chim Acta 438:274–278. https://doi.org/10.1016/j.cca.2014.08.042
doi: 10.1016/j.cca.2014.08.042
pubmed: 25199852
Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107:499–511. https://doi.org/10.1161/01.CIR.0000052939.59093.45
doi: 10.1161/01.CIR.0000052939.59093.45
pubmed: 12551878
Campos-López B, Meza-Meza MR, Parra-Rojas I et al (2021) Association of cardiometabolic risk status with clinical activity and damage in systemic lupus erythematosus patients: a cross-sectional study. Clin Immunol 222:108637. https://doi.org/10.1016/j.clim.2020.108637
doi: 10.1016/j.clim.2020.108637
pubmed: 33232825
López González ÁA, Rivero Ledo YI, Vicente Herrero MT et al (2015) Índices aterogénicos en trabajadores de diferentes sectores laborales del área mediterránea española. Clínica e Investigación en Arteriosclerosis 27:118–128. https://doi.org/10.1016/j.arteri.2014.10.004
doi: 10.1016/j.arteri.2014.10.004
pubmed: 25542631
Kahn HS (2005) The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord 5:26. https://doi.org/10.1186/1471-2261-5-26
doi: 10.1186/1471-2261-5-26
pubmed: 16150143
pmcid: 1236917
Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215
doi: 10.1093/nar/16.3.1215
pubmed: 3344216
pmcid: 334765
OpenEpi: open source epidemiologic statistics for public health, version 2.3.1—ScienceOpen. https://www.scienceopen.com/document?vid=61cdd360-9883-4330-8c18-3f0341b0f715 . Accessed 11 Feb 2022
Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67. https://doi.org/10.1093/genetics/49.1.49
doi: 10.1093/genetics/49.1.49
pubmed: 17248194
pmcid: 1210557
Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y (2009) A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res 19(4):519–23
doi: 10.1038/cr.2009.33
pubmed: 19290020
Karassa FB, Trikalinos TA, Ioannidis JPA (2004) The role of FcγRIIA and IIIA polymorphisms in autoimmune diseases. Biomed Pharmacother 58:286–291. https://doi.org/10.1016/j.biopha.2004.04.004
doi: 10.1016/j.biopha.2004.04.004
pubmed: 15194164
Brull DJ, Serrano N, Zito F et al (2003) Human CRP gene polymorphism influences CRP levels: implications for the prediction and pathogenesis of coronary heart disease. ATVB 23:2063–2069. https://doi.org/10.1161/01.ATV.0000084640.21712.9C
doi: 10.1161/01.ATV.0000084640.21712.9C
Wang L, Lu X, Li Y et al (2009) Functional analysis of the C-reactive protein (CRP) gene -717A>G polymorphism associated with coronary heart disease. BMC Med Genet 10:73. https://doi.org/10.1186/1471-2350-10-73
doi: 10.1186/1471-2350-10-73
pubmed: 19624831
pmcid: 2723087
Chen J, Zhao J, Huang J et al (2005) ?717A>G polymorphism of human C-reactive protein gene associated with coronary heart disease in ethnic Han Chinese: the Beijing atherosclerosis study. J Mol Med 83:72–78. https://doi.org/10.1007/s00109-004-0585-5
doi: 10.1007/s00109-004-0585-5
pubmed: 15517131
Miller DT, Zee RYL, Suk Danik J et al (2005) Association of common CRP gene variants with CRP levels and cardiovascular events. Ann Hum Genet 69:623–638. https://doi.org/10.1111/j.1529-8817.2005.00210.x
doi: 10.1111/j.1529-8817.2005.00210.x
pubmed: 16266402
Reynoso-Villalpando GL, Padilla-Gutiérrez JR, Valdez-Haro A et al (2017) Relationship between C-reactive protein serum concentration and the 1846 C>T (rs1205) polymorphism in patients with acute coronary syndrome from western Mexico. Genet Test Mol Biomarkers 21:334–340. https://doi.org/10.1089/gtmb.2016.0312
doi: 10.1089/gtmb.2016.0312
pubmed: 28277782
Eiriksdottir G, Smith AV, Aspelund T et al (2009) The interaction of adiposity with the CRP gene affects CRP levels: age, gene/environment susceptibilty-Reykjavik study. Int J Obes 33:267–272. https://doi.org/10.1038/ijo.2008.274
doi: 10.1038/ijo.2008.274
Rangel-Villalobos H, Muñoz-Valle JF, González-Martín A et al (2008) Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome. Am J Phys Anthropol 135:448–461. https://doi.org/10.1002/ajpa.20765
doi: 10.1002/ajpa.20765
pubmed: 18161845