Association of - 717 A > G (rs2794521) CRP polymorphism with high cardiovascular risk by C-reactive protein in systemic lupus erythematosus patients.


Journal

Clinical rheumatology
ISSN: 1434-9949
Titre abrégé: Clin Rheumatol
Pays: Germany
ID NLM: 8211469

Informations de publication

Date de publication:
Mar 2023
Historique:
received: 10 05 2022
accepted: 28 10 2022
revised: 07 10 2022
pubmed: 11 11 2022
medline: 22 2 2023
entrez: 10 11 2022
Statut: ppublish

Résumé

Systemic lupus erythematosus (SLE) is an autoimmune disease where genetic factors have been related to SLE susceptibility and disease severity. CRP polymorphisms have been associated with high C-reactive protein (CRP) serum levels, cardiovascular disease (CVD), and high clinical disease activity in SLE patients; however, the evidence is still inconclusive. This study was aimed to assess the association of the - 717 A > G, - 409 G > A, + 1444 C > T, and + 1846 C > T CRP polymorphisms with genetic susceptibility, clinical disease activity, and CVD risk in Mexican-mestizo SLE patients. A comparative cross-sectional study was conducted on 369 unrelated women: 183 with SLE according to the 1997 SLE-ACR criteria and 186 healthy subjects (HS). The clinical disease activity was assessed by the Mex-SLEDAI score; CRP and lipid profile were quantified by turbidimetry and colorimetric-enzymatic assays, respectively. The CRP polymorphisms genotyping was carried out by allelic discrimination. SLE patients with - 717 AA genotype had higher CRP serum levels than SLE carriers of AG and GG genotypes (AA = 5 mg/L vs. AG = 3.2 mg/L vs. GG = 2.4 mg/L; p = 0.01), and the AA genotype was associated with high CVD risk by CRP in SLE patients (OR = 3; CI: 1.2-7.6; p < 0.01). The - 717 A > G CRP polymorphism is a risk factor for high CRP levels and high CVD risk in Mexican-mestizo SLE patients. Key Points • Cardiovascular disease is one of the major causes of death in SLE patients due to the higher prevalence of traditional and non-traditional cardiovascular risk factors. • C-reactive protein is a liver-derived acute-phase protein suggested as one powerful independent risk predictor factor for cardiovascular disease. • Single nucleotide polymorphisms in CRP have been suggested as genetic susceptibility factors that could modify the SLE pathophysiology outcomes. • Mexican-mestizo SLE patients carrying the -717 A>G CRP AA genotype had 3-fold high cardiovascular disease risk than SLE patients with AG or GG genotypes.

Identifiants

pubmed: 36355253
doi: 10.1007/s10067-022-06430-6
pii: 10.1007/s10067-022-06430-6
doi:

Substances chimiques

C-Reactive Protein 9007-41-4

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

761-772

Informations de copyright

© 2022. The Author(s), under exclusive licence to International League of Associations for Rheumatology (ILAR).

Références

Pan L, Lu M-P, Wang J-H et al (2020) Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr 16:19–30. https://doi.org/10.1007/s12519-019-00229-3
doi: 10.1007/s12519-019-00229-3 pubmed: 30796732
Giannelou M, Mavragani CP (2017) Cardiovascular disease in systemic lupus erythematosus: a comprehensive update. J Autoimmun 82:1–12. https://doi.org/10.1016/j.jaut.2017.05.008
doi: 10.1016/j.jaut.2017.05.008 pubmed: 28606749
Enocsson H, Karlsson J, Li H-Y et al (2021) The complex role of C-reactive protein in systemic lupus erythematosus. JCM 10:5837. https://doi.org/10.3390/jcm10245837
doi: 10.3390/jcm10245837 pubmed: 34945133 pmcid: 8708507
Boncler M, Wu Y, Watala C (2019) The multiple faces of C-reactive protein—physiological and pathophysiological implications in cardiovascular disease. Molecules 24:2062. https://doi.org/10.3390/molecules24112062
doi: 10.3390/molecules24112062 pubmed: 31151201 pmcid: 6600390
(2010) C-reactive protein concentration and risk of coronary heart 605 disease, stroke, and mortality: an individual participant meta-analysis. 375:9. https://doi.org/10.1016/S0140-6736(09)61717-7
Salomão RG, de Carvalho LM, Izumi C et al (2018) Homocysteine, folate, hs-C-reactive protein, tumor necrosis factor alpha and inflammatory proteins: are these biomarkers related to nutritional status and cardiovascular risk in childhood-onset systemic lupus erythematosus? Pediatr Rheumatol 16:4. https://doi.org/10.1186/s12969-017-0220-y
doi: 10.1186/s12969-017-0220-y
Pocovi-Gerardino G, Correa-Rodríguez M, Rubio J-LC et al (2020) The relationships of high-sensitivity C-reactive protein and homocysteine levels with disease activity, damage accrual, and cardiovascular risk in systemic lupus erythematosus. Biol Res Nurs 22:169–177. https://doi.org/10.1177/1099800419889192
doi: 10.1177/1099800419889192 pubmed: 31763930
Meyer O (2010) Anti-CRP antibodies in systemic lupus erythematosus. Joint Bone Spine 77:384–389. https://doi.org/10.1016/j.jbspin.2010.04.010
doi: 10.1016/j.jbspin.2010.04.010 pubmed: 20627790
Pesqueda-Cendejas K, Parra-Rojas I, Mora-García PE et al (2022) CRP serum levels are associated with high cardiometabolic risk and clinical disease activity in systemic lupus erythematosus patients. JCM 11:1849. https://doi.org/10.3390/jcm11071849
doi: 10.3390/jcm11071849 pubmed: 35407457 pmcid: 8999239
Rullo OJ, Tsao BP (2013) Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis 72:ii56–ii61. https://doi.org/10.1136/annrheumdis-2012-202351
doi: 10.1136/annrheumdis-2012-202351 pubmed: 23253915
Jonsen A, Gunnarsson I, Gullstrand B et al (2007) Association between SLE nephritis and polymorphic variants of the CRP and Fc RIIIa genes. Rheumatology 46:1417–1421. https://doi.org/10.1093/rheumatology/kem167
doi: 10.1093/rheumatology/kem167 pubmed: 17596285
Delongui F, Lozovoy MAB, Iriyoda TMV et al (2017) C-reactive protein +1444CT (rs1130864) genetic polymorphism is associated with the susceptibility to systemic lupus erythematosus and C-reactive protein levels. Clin Rheumatol 36:1779–1788. https://doi.org/10.1007/s10067-017-3695-5
doi: 10.1007/s10067-017-3695-5 pubmed: 28567557
Martínez-Calleja A, Quiróz-Vargas I, Parra-Rojas I et al (2012) Haplotypes in the CRP gene associated with increased BMI and levels of CRP in subjects with type 2 diabetes or obesity from southwestern Mexico. Exp Diabetes Res 2012:1–7. https://doi.org/10.1155/2012/982683
doi: 10.1155/2012/982683
Flores-Alfaro E, Fernández-Tilapa G, Salazar-Martínez E et al (2012) Common variants in the CRP gene are associated with serum C-reactive protein levels and body mass index in healthy individuals in Mexico. Genet Mol Res 11:2258–2267. https://doi.org/10.4238/2012.May.14.5
doi: 10.4238/2012.May.14.5 pubmed: 22614460
Akbarzadeh Najar R, Ghaderian SMH, Tabatabaei Panah AS (2012) C-reactive protein (CRP) gene polymorphisms: implication in CRP plasma levels and susceptibility to acute myocardial infarction. Mol Biol Rep 39:3705–3712. https://doi.org/10.1007/s11033-011-1145-z
doi: 10.1007/s11033-011-1145-z pubmed: 21720757
Paik JK, Kim OY, Koh SJ et al (2007) Additive effect of interleukin-6 and C-reactive protein (CRP) single nucleotide polymorphism on serum CRP concentration and other cardiovascular risk factors. Clin Chim Acta 380:68–74. https://doi.org/10.1016/j.cca.2006.11.011
doi: 10.1016/j.cca.2006.11.011 pubmed: 17335789
Atisha-Fregoso Y, Lima G, Carrillo-Maravilla E et al (2018) C-reactive protein (CRP) polymorphisms and haplotypes are associated with SLE susceptibility and activity but not with serum CRP levels in Mexican population. Clin Rheumatol 37:1817–1824. https://doi.org/10.1007/s10067-018-4059-5
doi: 10.1007/s10067-018-4059-5 pubmed: 29556849
Enocsson H, Gullstrand B, Eloranta M-L et al (2021) C-reactive protein levels in systemic lupus erythematosus are modulated by the interferon gene signature and CRP gene polymorphism rs1205. Front Immunol 11:622326. https://doi.org/10.3389/fimmu.2020.622326
doi: 10.3389/fimmu.2020.622326 pubmed: 33584722 pmcid: 7876312
Hage FG, Szalai AJ (2007) C-reactive protein gene polymorphisms, C-reactive protein blood levels, and cardiovascular disease risk. J Am Coll Cardiol 50:1115–1122. https://doi.org/10.1016/j.jacc.2007.06.012
doi: 10.1016/j.jacc.2007.06.012 pubmed: 17868801
Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725. https://doi.org/10.1002/art.1780400928
doi: 10.1002/art.1780400928 pubmed: 9324032
Ruiz-Quezada S, Vázquez-Del Mercado M, Parra-Rojas I et al (2004) Genotype and allele frequency of PAI-1 promoter polymorphism in healthy subjects from the west of Mexico. Association with biochemical and hematological parameters. Ann Genet 47:155–162. https://doi.org/10.1016/j.anngen.2003.12.001
doi: 10.1016/j.anngen.2003.12.001 pubmed: 15183748
Uribe AG, Vilá LM, McGwin G et al (2004) The Systemic Lupus Activity Measure-revised, the Mexican Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus. J Rheumatol 31:1934–1940
pubmed: 15468356
Gladman D, Ginzler E, Goldsmith C et al (1996) The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 39:363–369. https://doi.org/10.1002/art.1780390303
doi: 10.1002/art.1780390303 pubmed: 8607884
World Health Organization (2011) Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8–11.  https://www.who.int/publications/i/item/9789241501491
World Health Organization (2000) Obesity: Preventing and managing the global epidemic, In: WHO technical report series, Geneva 894. http://www.who.int/entity/nutrition/publications/obesity/WHO_TRS_894/en/index.html
Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis: waist-to-height ratio as a screening tool. Obes Rev 13:275–286. https://doi.org/10.1111/j.1467-789X.2011.00952.x
doi: 10.1111/j.1467-789X.2011.00952.x pubmed: 22106927
Wakabayashi I, Daimon T (2015) The “cardiometabolic index” as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin Chim Acta 438:274–278. https://doi.org/10.1016/j.cca.2014.08.042
doi: 10.1016/j.cca.2014.08.042 pubmed: 25199852
Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107:499–511. https://doi.org/10.1161/01.CIR.0000052939.59093.45
doi: 10.1161/01.CIR.0000052939.59093.45 pubmed: 12551878
Campos-López B, Meza-Meza MR, Parra-Rojas I et al (2021) Association of cardiometabolic risk status with clinical activity and damage in systemic lupus erythematosus patients: a cross-sectional study. Clin Immunol 222:108637. https://doi.org/10.1016/j.clim.2020.108637
doi: 10.1016/j.clim.2020.108637 pubmed: 33232825
López González ÁA, Rivero Ledo YI, Vicente Herrero MT et al (2015) Índices aterogénicos en trabajadores de diferentes sectores laborales del área mediterránea española. Clínica e Investigación en Arteriosclerosis 27:118–128. https://doi.org/10.1016/j.arteri.2014.10.004
doi: 10.1016/j.arteri.2014.10.004 pubmed: 25542631
Kahn HS (2005) The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord 5:26. https://doi.org/10.1186/1471-2261-5-26
doi: 10.1186/1471-2261-5-26 pubmed: 16150143 pmcid: 1236917
Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215
doi: 10.1093/nar/16.3.1215 pubmed: 3344216 pmcid: 334765
OpenEpi: open source epidemiologic statistics for public health, version 2.3.1—ScienceOpen. https://www.scienceopen.com/document?vid=61cdd360-9883-4330-8c18-3f0341b0f715 . Accessed 11 Feb 2022
Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67. https://doi.org/10.1093/genetics/49.1.49
doi: 10.1093/genetics/49.1.49 pubmed: 17248194 pmcid: 1210557
Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y (2009) A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res 19(4):519–23
doi: 10.1038/cr.2009.33 pubmed: 19290020
Karassa FB, Trikalinos TA, Ioannidis JPA (2004) The role of FcγRIIA and IIIA polymorphisms in autoimmune diseases. Biomed Pharmacother 58:286–291. https://doi.org/10.1016/j.biopha.2004.04.004
doi: 10.1016/j.biopha.2004.04.004 pubmed: 15194164
Brull DJ, Serrano N, Zito F et al (2003) Human CRP gene polymorphism influences CRP levels: implications for the prediction and pathogenesis of coronary heart disease. ATVB 23:2063–2069. https://doi.org/10.1161/01.ATV.0000084640.21712.9C
doi: 10.1161/01.ATV.0000084640.21712.9C
Wang L, Lu X, Li Y et al (2009) Functional analysis of the C-reactive protein (CRP) gene -717A>G polymorphism associated with coronary heart disease. BMC Med Genet 10:73. https://doi.org/10.1186/1471-2350-10-73
doi: 10.1186/1471-2350-10-73 pubmed: 19624831 pmcid: 2723087
Chen J, Zhao J, Huang J et al (2005) ?717A>G polymorphism of human C-reactive protein gene associated with coronary heart disease in ethnic Han Chinese: the Beijing atherosclerosis study. J Mol Med 83:72–78. https://doi.org/10.1007/s00109-004-0585-5
doi: 10.1007/s00109-004-0585-5 pubmed: 15517131
Miller DT, Zee RYL, Suk Danik J et al (2005) Association of common CRP gene variants with CRP levels and cardiovascular events. Ann Hum Genet 69:623–638. https://doi.org/10.1111/j.1529-8817.2005.00210.x
doi: 10.1111/j.1529-8817.2005.00210.x pubmed: 16266402
Reynoso-Villalpando GL, Padilla-Gutiérrez JR, Valdez-Haro A et al (2017) Relationship between C-reactive protein serum concentration and the 1846 C>T (rs1205) polymorphism in patients with acute coronary syndrome from western Mexico. Genet Test Mol Biomarkers 21:334–340. https://doi.org/10.1089/gtmb.2016.0312
doi: 10.1089/gtmb.2016.0312 pubmed: 28277782
Eiriksdottir G, Smith AV, Aspelund T et al (2009) The interaction of adiposity with the CRP gene affects CRP levels: age, gene/environment susceptibilty-Reykjavik study. Int J Obes 33:267–272. https://doi.org/10.1038/ijo.2008.274
doi: 10.1038/ijo.2008.274
Rangel-Villalobos H, Muñoz-Valle JF, González-Martín A et al (2008) Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome. Am J Phys Anthropol 135:448–461. https://doi.org/10.1002/ajpa.20765
doi: 10.1002/ajpa.20765 pubmed: 18161845

Auteurs

Karen Pesqueda-Cendejas (K)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.

Isela Parra-Rojas (I)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
Laboratorio de Investigación en Obesidad Y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, 39087, Chilpancingo de los Bravo, Guerrero, Mexico.

Mónica R Meza-Meza (MR)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.

Paulina E Mora-García (PE)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.

Bertha Campos-López (B)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.

Adolfo I Ruiz-Ballesteros (AI)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.

Margarita Montoya-Buelna (M)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.

Melissa Rivera-Escoto (M)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.

José M Moreno-Ortiz (JM)

Instituto de Genética Humana "Dr. Enrique Corona Rivera, Departamento de Biología Molecular Y Genómica, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.

Luis A Bautista-Herrera (LA)

Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas E Ingenierías, Universidad de Guadalajara, 44430, Guadalajara, Jalisco, Mexico.

Sergio Cerpa-Cruz (S)

Departamento de Reumatología, O.P.D. Hospital Civil de Guadalajara Fray Antonio Alcalde, 44280, Guadalajara, Jalisco, Mexico.

Ulises De la Cruz-Mosso (U)

Red de Inmunonutrición Y Genómica Nutricional en Las Enfermedades Autoinmunes, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico. ulises_cdm@hotmail.com.
Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico. ulises_cdm@hotmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH