Impact of molecular sequence data completeness on HIV cluster detection and a network science approach to enhance detection.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 11 2022
10 11 2022
Historique:
received:
28
03
2022
accepted:
05
10
2022
entrez:
10
11
2022
pubmed:
11
11
2022
medline:
15
11
2022
Statut:
epublish
Résumé
Detection of viral transmission clusters using molecular epidemiology is critical to the response pillar of the Ending the HIV Epidemic initiative. Here, we studied whether inference with an incomplete dataset would influence the accuracy of the reconstructed molecular transmission network. We analyzed viral sequence data available from ~ 13,000 individuals with diagnosed HIV (2012-2019) from Houston Health Department surveillance data with 53% completeness (n = 6852 individuals with sequences). We extracted random subsamples and compared the resulting reconstructed networks versus the full-size network. Increasing simulated completeness was associated with an increase in the number of detected clusters. We also subsampled based on the network node influence in the transmission of the virus where we measured Expected Force (ExF) for each node in the network. We simulated the removal of nodes with the highest and then lowest ExF from the full dataset and discovered that 4.7% and 60% of priority clusters were detected respectively. These results highlight the non-uniform impact of capturing high influence nodes in identifying transmission clusters. Although increasing sequence reporting completeness is the way to fully detect HIV transmission patterns, reaching high completeness has remained challenging in the real world. Hence, we suggest taking a network science approach to enhance performance of molecular cluster detection, augmented by node influence information.
Identifiants
pubmed: 36357480
doi: 10.1038/s41598-022-21924-8
pii: 10.1038/s41598-022-21924-8
pmc: PMC9648870
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
19230Subventions
Organisme : CDC HHS
ID : NU62PS924515
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI135992
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Kidney Res Clin Pract. 2017 Mar;36(1):3-11
pubmed: 28392994
Int J Emerg Med. 2021 Apr 14;14(1):22
pubmed: 33853518
J Infect Dis. 2006 Sep 15;194 Suppl 1:S51-8
pubmed: 16921473
AIDS. 2003 May 2;17(7):1063-9
pubmed: 12700457
J Biomed Inform. 2008 Feb;41(1):1-14
pubmed: 17625974
Science. 2009 Jul 24;325(5939):412-3
pubmed: 19628854
AIDS Res Hum Retroviruses. 2019 Apr;35(4):368-375
pubmed: 30403157
Sci Rep. 2019 Jan 31;9(1):1051
pubmed: 30705307
J Acquir Immune Defic Syndr. 2015 Dec 1;70(4):428-35
pubmed: 26258569
Stat Methods Med Res. 2006 Jun;15(3):213-34
pubmed: 16768297
Viruses. 2021 Mar 30;13(4):
pubmed: 33808053
J Acquir Immune Defic Syndr. 2018 Dec 15;79(5):543-550
pubmed: 30222659
Sci Rep. 2021 Feb 8;11(1):3325
pubmed: 33558579
Am J Prev Med. 2021 Nov;61(5 Suppl 1):S130-S142
pubmed: 34686282
Sci Rep. 2015 Mar 02;5:8665
pubmed: 25727453
J Infect Dis. 2005 Sep 15;192(6):958-66
pubmed: 16107947
Lancet HIV. 2019 Jun;6(6):e382-e395
pubmed: 31036482
Nature. 1998 Jun 4;393(6684):440-2
pubmed: 9623998
Sex Transm Dis. 2018 Apr;45(4):222-228
pubmed: 29465708
Mol Biol Evol. 1993 May;10(3):512-26
pubmed: 8336541
Mol Biol Evol. 2018 Jul 1;35(7):1812-1819
pubmed: 29401317
MMWR Morb Mortal Wkly Rep. 2019 Apr 19;68(15):344-349
pubmed: 30998671