Regulation of autophagy of the heart in ischemia and reperfusion.


Journal

Apoptosis : an international journal on programmed cell death
ISSN: 1573-675X
Titre abrégé: Apoptosis
Pays: Netherlands
ID NLM: 9712129

Informations de publication

Date de publication:
02 2023
Historique:
accepted: 17 10 2022
pubmed: 13 11 2022
medline: 3 3 2023
entrez: 12 11 2022
Statut: ppublish

Résumé

Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3β, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.

Identifiants

pubmed: 36369366
doi: 10.1007/s10495-022-01786-1
pii: 10.1007/s10495-022-01786-1
doi:

Substances chimiques

AMP-Activated Protein Kinases EC 2.7.11.31
Glycogen Synthase Kinase 3 beta EC 2.7.11.1
TOR Serine-Threonine Kinases EC 2.7.11.1
Phosphatidylinositol 3-Kinases EC 2.7.1.-

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

55-80

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

van der Ende MY, Juarez-Orozco LE, Waardenburg I et al (2020) Sex-based differences in unrecognized myocardial infarction. J Am Heart Assoc 9(13):e015519. https://doi.org/10.1161/JAHA.119.015519
doi: 10.1161/JAHA.119.015519 pubmed: 32573316 pmcid: 7670510
Geyer S, Eberhard S, Schmidt BMW et al (2018) Morbidity compression in myocardial infarction 2006 to 2015 in terms of changing rates and age at occurrence: a longitudinal study using claims data from Germany. PLoS ONE 13(8):e0202631. https://doi.org/10.1371/journal.pone.0202631
doi: 10.1371/journal.pone.0202631 pubmed: 30138437 pmcid: 6107226
Dalen JE, Alpert JS, Goldberg RJ, Weinstein RS (2014) The epidemic of the 20(th) century: coronary heart disease. Am J Med 127(9):807–812. https://doi.org/10.1016/j.amjmed.2014.04.015
doi: 10.1016/j.amjmed.2014.04.015 pubmed: 24811552
Menees DS, Peterson ED, Wang Y et al (2013) Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med 369(10):901–909. https://doi.org/10.1056/NEJMoa1208200
doi: 10.1056/NEJMoa1208200 pubmed: 24004117
Fabris E, Kilic S, Schellings DAAM et al (2017) Long-term mortality and prehospital tirofiban treatment in patients with ST elevation myocardial infarction. Heart 103(19):1515–1520. https://doi.org/10.1136/heartjnl-2017-311181
doi: 10.1136/heartjnl-2017-311181 pubmed: 28679686
Vaidya SR, Devarapally SR, Arora S (2017) Infarct related artery only versus complete revascularization in ST-segment elevation myocardial infarction and multi vessel disease: a meta-analysis. Cardiovasc Diagn Ther 7(1):16–26. https://doi.org/10.21037/cdt.2016.08.06
doi: 10.21037/cdt.2016.08.06 pubmed: 28164009 pmcid: 5253451
Olier I, Sirker A, Hildick-Smith DJR (2018) British Cardiovascular Intervention Society and the National Institute for Cardiovascular Outcomes Research. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart 104(20):1683–1690. https://doi.org/10.1136/heartjnl-2017-312366
doi: 10.1136/heartjnl-2017-312366 pubmed: 29437885
Bessonov IS, Kuznetsov VA, Gorbatenko EA et al (2021) Influence of total ischemic time on clinical outcomes in patients with ST-segment elevation myocardial infarction. Kardiologiia 61(2):40–46. https://doi.org/10.18087/cardio.2021.2.n1314
doi: 10.18087/cardio.2021.2.n1314 pubmed: 33734047
Megaly M, Pershad A, Glogoza M et al (2021) Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc Revasc Med 30:59–64. https://doi.org/10.1016/j.carrev.2020.09.032
doi: 10.1016/j.carrev.2020.09.032 pubmed: 33032963
McCartney PJ, Berry C (2019) Redefining successful primary PCI. Eur Heart J Cardiovasc Imaging 20(2):133–135. https://doi.org/10.1093/ehjci/jey159
doi: 10.1093/ehjci/jey159 pubmed: 30476011
Basir MB, Lemor A, Gorgis S et al (2022) National Cardiogenic Shock Initiative Investigators. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter Cardiovasc Interv 99(3):650–657. https://doi.org/10.1002/ccd.29895
doi: 10.1002/ccd.29895 pubmed: 34343409
de Duve C, Pressman BC, Gianetto R et al (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60(4):604–617. https://doi.org/10.1042/bj0600604
doi: 10.1042/bj0600604 pubmed: 13249955 pmcid: 1216159
Bainton DF (1981) The discovery of lysosomes. J Cell Biol 91(3):66s–676. https://doi.org/10.1083/jcb.91.3.66s
doi: 10.1083/jcb.91.3.66s pubmed: 7033245
de Duve C (1983) Lysosomes revisited. Eur J Biochem 137(3):391–397. https://doi.org/10.1111/j.1432-1033.1983.tb07841.x
doi: 10.1111/j.1432-1033.1983.tb07841.x pubmed: 6319122
Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12(1):198–202. https://doi.org/10.1083/jcb.12.1.198
doi: 10.1083/jcb.12.1.198 pubmed: 13862833 pmcid: 2106008
Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4(6):740–743. https://doi.org/10.4161/auto.6398
doi: 10.4161/auto.6398 pubmed: 18567941
Radewa J (1963) Observations on autophagocytosis phenomena in the blood. Z Rheumaforsch 22:36–46
pubmed: 13972975
Deter RL, Baudhuin P, de Duve C (1967) Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35(2):11–16. https://doi.org/10.1083/jcb.35.2.c11
doi: 10.1083/jcb.35.2.c11
Deter RL, de Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33(2):437–449. https://doi.org/10.1083/jcb.33.2.437
doi: 10.1083/jcb.33.2.437 pubmed: 4292315 pmcid: 2108350
Sciarretta S, Maejima Y, Zablocki D et al (2018) The role of autophagy in the heart. Annu Rev Physiol 80(1):1–26. https://doi.org/10.1146/annurev-physiol-021317-121427
doi: 10.1146/annurev-physiol-021317-121427 pubmed: 29068766
Shintani T, Klionsky DJ, Shintani T et al (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995. https://doi.org/10.1126/science.1099993
doi: 10.1126/science.1099993 pubmed: 15528435 pmcid: 1705980
Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. https://doi.org/10.1152/physrev.00030.2009
doi: 10.1152/physrev.00030.2009 pubmed: 20959619
Singh KK, Yanagawa B, Quan A et al (2014) Autophagy gene fingerprint in human ischemia and reperfusion. J Thorac Cardiovasc Surg 147(3):1065–1072. https://doi.org/10.1016/j.jtcvs.2013.04.042
doi: 10.1016/j.jtcvs.2013.04.042 pubmed: 23778083
Huang C, Andres AM, Ratliff EP et al (2011) Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS ONE 6(6):e20975. https://doi.org/10.1371/journal
doi: 10.1371/journal pubmed: 21687634 pmcid: 3110820
Klionsky DJ, Abdel-Aziz AK, Sara Abdelfatah S et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17(1):1-382. https://doi.org/10.1080/15548627.2020.1797280
Vélez DE, Hermann R, Frank MB et al (2016) Effects of wortmannin on cardioprotection exerted by ischemic preconditioning in rat hearts subjected to ischemia-reperfusion. J Physiol Biochem 72(1):83–91. https://doi.org/10.1007/s13105-015-0460-6
doi: 10.1007/s13105-015-0460-6 pubmed: 26746207
García-Rúa V, Feijóo-Bandín S, Rodríguez-Penas D et al (2016) Endolysosomal two-pore channels regulate autophagy in cardiomyocytes. J Physiol 594(11):3061–3077. https://doi.org/10.1113/JP271332
doi: 10.1113/JP271332 pubmed: 26757341 pmcid: 4887684
Wang A, Zhang H, Liang Z et al (2016) U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur J Pharmacol 88:280–285. https://doi.org/10.1016/j.ejphar.2016.06.038
doi: 10.1016/j.ejphar.2016.06.038
Hua P, Liu J, Tao J et al (2017) Efficacy and mechanism of preoperative simvastatin therapy on myocardial protection after extracorporeal circulation. Biomed Res Int 2017:6082430. https://doi.org/10.1155/2017/6082430
doi: 10.1155/2017/6082430 pubmed: 29250545 pmcid: 5698794
Tang H, Song X, Ling Y et al (2017) Puerarin attenuates myocardial hypoxia/reoxygenation injury by inhibiting autophagy via the Akt signaling pathway. Mol Med Rep 5(6):3747–3754. https://doi.org/10.3892/mmr.2017.6424
doi: 10.3892/mmr.2017.6424
Ye G, Fu Q, Jiang L et al (2018) Vascular smooth muscle cells activate PI3K/Akt pathway to attenuate myocardial ischemia/reperfusion-induced apoptosis and autophagy by secreting bFGF. Biomed Pharmacother 107:1779–1785. https://doi.org/10.1016/j.biopha.2018.05.113
doi: 10.1016/j.biopha.2018.05.113 pubmed: 30257397
Su Q, Liu Y, Lv X-W et al (2019) Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. J Mol Cell Cardiol 133:12–25. https://doi.org/10.1016/j.yjmcc.2019.05.021
doi: 10.1016/j.yjmcc.2019.05.021 pubmed: 31145943
Shao J, Miao C, Geng Z et al (2019) Effect of eNOS on ischemic postconditioning-induced autophagy against ischemia/reperfusion injury in mice. Biomed Res Int 2019(6):10155–10163. https://doi.org/10.1155/2019/5201014
doi: 10.1155/2019/5201014
Wang Y, Yang Z, Zheng G et al (2019) Metformin promotes autophagy in ischemia/reperfusion myocardium via cytoplasmic AMPKα1 and nuclear AMPKα2 pathways. Life Sci 225:64–71. https://doi.org/10.1016/j.lfs.2019.04.002
doi: 10.1016/j.lfs.2019.04.002 pubmed: 30953640
Zhong Y, Zhong P, He S et al (2017) Trimetazidine protects cardiomyocytes against hypoxia/reoxygenation injury by promoting AMP-activated protein kinase–dependent autophagic Flux. J Cardiovasc Pharmacol 69(6):389–397. https://doi.org/10.1097/FJC.0000000000000487
doi: 10.1097/FJC.0000000000000487 pubmed: 28581448
Jahania SM, Sengstock D, Vaitkevicius P et al (2013) Activation of the homeostatic intracellular repair response during cardiac surgery. J Am Coll Surg 216(4):719–726. https://doi.org/10.1016/j.jamcollsurg.2012.12.034
doi: 10.1016/j.jamcollsurg.2012.12.034 pubmed: 23415552 pmcid: 3724756
Marek-Iannucci S, Thomas A, Hou J et al (2019) Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury. Sci Rep 9(1):10001. https://doi.org/10.1038/s41598-019-46452-w
doi: 10.1038/s41598-019-46452-w pubmed: 31292486 pmcid: 6620356
Zhao T, Huang X, Han L et al (2012) Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 287(28):23615–23625. https://doi.org/10.1074/jbc.M112.379164
doi: 10.1074/jbc.M112.379164 pubmed: 22619176 pmcid: 3390636
Gottlieb RA, Andres AM, Sin J et al (2015) Untangling autophagy measurements. Circ Res 116(3):504–514. https://doi.org/10.1161/CIRCRESAHA.116.303787
doi: 10.1161/CIRCRESAHA.116.303787 pubmed: 25634973 pmcid: 4313387
Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 98(2):425–444
pubmed: 7355988 pmcid: 1903416
Yan L, Vatner DE, Kim S-J et al (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 102(39):13807–13812. https://doi.org/10.1073/pnas.0506843102
doi: 10.1073/pnas.0506843102 pubmed: 16174725 pmcid: 1224362
Valentim L, Laurence KM, Townsend PA et al (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40(6):846–852. https://doi.org/10.1016/j.yjmcc.2006.03.428
doi: 10.1016/j.yjmcc.2006.03.428 pubmed: 16697404
De Meyer GRY, Martinet W (2009) Autophagy in the cardiovascular system. Biochim Biophys Acta Mol Cell Res 1793(9):1485–1495. https://doi.org/10.1016/j.bbamcr.2008.12.01
doi: 10.1016/j.bbamcr.2008.12.01
Qian J, Ren X, Wang X et al (2009) Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. Circ Res 105(12):1223–1231. https://doi.org/10.1161/CIRCRESAHA.109.200378
doi: 10.1161/CIRCRESAHA.109.200378 pubmed: 19850943 pmcid: 2799045
Kanamori H, Takemura G, Goto K et al (2011) Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Circ Physiol 300(6):H2261–H2271. https://doi.org/10.1152/ajpheart.01056.2010
doi: 10.1152/ajpheart.01056.2010
Sciarretta S, Hariharan N, Monden Y et al (2011) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 32(3):275–281. https://doi.org/10.1007/s00246-010-9855-x
doi: 10.1007/s00246-010-9855-x pubmed: 21170742
Sengupta A, Molkentin JD, Paik J-H et al (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286(9):7468–7478. https://doi.org/10.1074/jbc.M110.179242
doi: 10.1074/jbc.M110.179242 pubmed: 21159781
Yan L, Sadoshima J, Vatner DE et al (2009) Autophagy in ischemic preconditioning and hibernating myocardium. Autophagy 5(5):709–712. https://doi.org/10.4161/auto.5.5.8510
doi: 10.4161/auto.5.5.8510 pubmed: 19398895
Sala-Mercado JA, Wider J, Reddy Undyala VV et al (2010) Profound Cardioprotection With Chloramphenicol Succinate in the Swine Model of Myocardial Ischemia-Reperfusion Injury. Circulation 122:S179–S184. https://doi.org/10.1161/CIRCULATIONAHA.109.928242
doi: 10.1161/CIRCULATIONAHA.109.928242 pubmed: 20837911 pmcid: 3355994
Ma X, Liu H, Foyil SR et al (2012) Impaired Autophagosome Clearance Contributes to Cardiomyocyte Death in Ischemia/Reperfusion Injury. Circulation 125(25):3170–3181. https://doi.org/10.1161/CIRCULATIONAHA.111.041814
doi: 10.1161/CIRCULATIONAHA.111.041814 pubmed: 22592897 pmcid: 3397471
Ma M-Q, Thapalia BA, Lin X-H (2015) A 6 hour therapeutic window, optimal for interventions targeting AMPK synergism and apoptosis antagonism, for cardioprotection against myocardial ischemic injury: an experimental study on rats. Am J Cardiovasc Dis 5(1):63–71
pubmed: 26064793 pmcid: 4447076
Zhang H, Yin Y, Liu Y et al (2020) Necroptosis mediated by impaired autophagy flux contributes to adverse ventricular remodeling after myocardial infarction. Biochem Pharmacol 175:113915. https://doi.org/10.1016/j.bcp.2020.113915
doi: 10.1016/j.bcp.2020.113915 pubmed: 32179044
Zhang Y, Yao Y, Fang N et al (2014) Restoration of autophagic flux in myocardial tissues is required for cardioprotection of sevoflurane postconditioning in rats. Acta Pharmacol Sin 35(6):758–769. https://doi.org/10.1038/aps.2014.20
doi: 10.1038/aps.2014.20 pubmed: 24793309 pmcid: 4086393
Wang Z-G, Wang Y, Huang Y et al (2015) bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci Rep 5(1):9287. https://doi.org/10.1038/srep09287
doi: 10.1038/srep09287 pubmed: 25787015 pmcid: 4365411
Huang Z, Han Z, Ye B et al (2015) Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol 762:1–10. https://doi.org/10.1016/j.ejphar.2015.05.028
doi: 10.1016/j.ejphar.2015.05.028 pubmed: 26004523
Yu P, Zhang J, Yu S et al (2015) Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance. PLoS ONE 10(8):e0134666. https://doi.org/10.1371/j ournal.pone.0134666
doi: 10.1371/journal.pone.0134666 pubmed: 26263161 pmcid: 4532466
Xuan F, Jian J, Lin X et al (2017) 17-Methoxyl-7-Hydroxy-Benzene-Furanchalcone Ameliorates Myocardial Ischemia/Reperfusion Injury in Rat by Inhibiting Apoptosis and Autophagy Via the PI3K–Akt Signal Pathway. Cardiovasc Toxicol 17(1):79–87. https://doi.org/10.1007/s12012-016-9358-y
doi: 10.1007/s12012-016-9358-y pubmed: 26792585
Guo L, Xu J-M, Mo X-Y (2015) Ischemic postconditioning regulates cardiomyocyte autophagic activity following ischemia/reperfusion injury. Mol Med Rep 12(1):1169–1176. https://doi.org/10.3892/mmr.2015.3533
doi: 10.3892/mmr.2015.3533 pubmed: 25816157
Wu X, He L, Chen F et al (2014) Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS ONE 9(11):112891. https://doi.org/10.1371/journal.pone.0112891
doi: 10.1371/journal.pone.0112891
Zhao M, Sun L, Yu X-J et al (2013) Acetylcholine mediates AMPK-dependent autophagic cytoprotection in H9c2 cells during hypoxia/reoxygenation injury. Cell Physiol Biochem 32(3):601–613. https://doi.org/10.1159/000354464
doi: 10.1159/000354464 pubmed: 24021916
Xu Q, Li X, Lu Y et al (2015) Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion. Br J Pharmacol 172(12):3072–3085. https://doi.org/10.1111/bph.13111v
doi: 10.1111/bph.13111v pubmed: 25660104 pmcid: 4459024
Yang Y, Li Y, Chen X et al (2016) Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med 94(6):711–724. https://doi.org/10.1007/s00109-016-1387-2
doi: 10.1007/s00109-016-1387-2 pubmed: 26857375
Wang J, Wu D, Wang H (2019) Hydrogen Sulfide Plays an Important Protective Role by Influencing Autophagy in Diseases. Physiol Res 68(3):345. https://doi.org/10.33549/physiolres.933996
doi: 10.33549/physiolres.933996
Gurusamy N, Lekli I, Mukherjee S et al (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86(1):103–112. https://doi.org/10.1093/cvr/cvp384
doi: 10.1093/cvr/cvp384 pubmed: 19959541
Su F, Myers VD, Knezevic T et al (2016) Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight 1(19):e90931. https://doi.org/10.1172/jci.insight.90931
doi: 10.1172/jci.insight.90931 pubmed: 27882354 pmcid: 5111510
Hu S, Cao S, Tong Z et al (2018) FGF21 protects myocardial ischemia-reperfusion injury through reduction of miR-145-mediated autophagy. Am J Transl Res 10(11):3677–3688
pubmed: 30662618 pmcid: 6291727
French CJ, Taatjes DJ, Sobel BE (2010) Autophagy in myocardium of murine hearts subjected to ischemia followed by reperfusion. Histochem Cell Biol 134(5):519–526. https://doi.org/10.1007/s00418-010-0748-0
doi: 10.1007/s00418-010-0748-0 pubmed: 20931339
Cao X, Wang X, Ling Y et al (2014) Comparison of the degree of autophagy in neonatal rat cardiomyocytes and H9c2 cells exposed to hypoxia/reoxygenation. Clin Lab 60(5):809–814. https://doi.org/10.7754/clin.lab.2013.130521
doi: 10.7754/clin.lab.2013.130521 pubmed: 24839824
Gottlieb RA, Mentzer RM Jr, Linton P-J (2011) Impaired mitophagy at the heart of injury. Autophagy 7(12):1573–1574. https://doi.org/10.4161/auto.7.12.18175
doi: 10.4161/auto.7.12.18175 pubmed: 22082870 pmcid: 3288037
Lou G, Palikaras K, Lautrup S et al (2020) Mitophagy and neuroprotection. Trends Mol Med 26(1):8–20. https://doi.org/10.1016/j.molmed.2019.07.002
doi: 10.1016/j.molmed.2019.07.002 pubmed: 31375365
Tong M, Zablocki D, Sadoshima J (2020) The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 142:138–145. https://doi.org/10.1016/j.yjmcc.2020.04.015
doi: 10.1016/j.yjmcc.2020.04.015 pubmed: 32302592 pmcid: 7545744
Jin JY, Wei XX, Zhi XL et al (2020) Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin 42(5):655–664. https://doi.org/10.1038/s41401-020-00518-y
doi: 10.1038/s41401-020-00518-y pubmed: 32913266 pmcid: 8115655
Bi W, Jia J, Pang R et al (2019) Thyroid hormone postconditioning protects hearts from ischemia/reperfusion through reinforcing mitophagy. Biomed Pharmacother 118:109220. https://doi.org/10.1016/j.biopha.2019.109220
doi: 10.1016/j.biopha.2019.109220 pubmed: 31357081
Tang W, Lin D, Chen M et al (2019) PTEN-mediated mitophagy and APE1 overexpression protects against cardiac hypoxia/reoxygenation injury. Vitr Cell Dev Biol Anim 55(9):741–748. https://doi.org/10.1007/s11626-019-00389-6
doi: 10.1007/s11626-019-00389-6
Cao S, Sun Y, Wang W et al (2019) Poly (ADP-ribose) polymerase inhibition protects against myocardial ischaemia/reperfusion injury via suppressing mitophagy. J Cell Mol Med 23(10):6897–6906. https://doi.org/10.1111/jcmm.14573
doi: 10.1111/jcmm.14573 pubmed: 31379115 pmcid: 6787458
Zhu N, Li J, Li Y et al (2020) Berberine protects against simulated ischemia/reperfusion injury-induced H9C2 cardiomyocytes apoptosis in vitro and myocardial ischemia/reperfusion-induced apoptosis in vivo by regulating the mitophagy-mediated HIF-1α/BNIP3 pathway. Front Pharmacol 11:367. https://doi.org/10.3389/fphar.2020.00367
doi: 10.3389/fphar.2020.00367 pubmed: 32292345 pmcid: 7120539
Wu J, Yang Y, Gao Y et al (2020) Melatonin attenuates anoxia/reoxygenation injury by inhibiting excessive mitophagy through the MT2/SIRT3/FOXO3A signaling pathway in H9C2 cells. Drug Des Dev Therapy 14:2047–2060. https://doi.org/10.2147/DDDT.S248628
doi: 10.2147/DDDT.S248628
Zhang Y, Wang Y, Xu J et al (2019) Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res 66(2):e12542. https://doi.org/10.1111/jpi.12542
doi: 10.1111/jpi.12542 pubmed: 30516280
Sun T, Ding W, Xu T et al (2019) Parkin regulates programmed necrosis and myocardial ischemia/reperfusion injury by targeting cyclophilin-D. Antioxid Redox Signal 31(16):1177–1193. https://doi.org/10.1089/ars.2019.7734
doi: 10.1089/ars.2019.7734 pubmed: 31456416
Xin T, Lu C (2020) Irisin activates Opa1-induced mitophagy to protect cardiomyocytes against apoptosis following myocardial infarction. Aging 12(5):4474–4488. https://doi.org/10.18632/aging.102899
doi: 10.18632/aging.102899 pubmed: 32155590 pmcid: 7093202
Yu J, Li Y, Liu X et al (2019) Mitochondrial dynamics modulation as a critical contribution for Shenmai injection in attenuating hypoxia/reoxygenation injury. J Ethnopharmacol 237:9–19. https://doi.org/10.1016/j.jep.2019.03.033
doi: 10.1016/j.jep.2019.03.033 pubmed: 30880258
Guan L, Che Z, Meng X et al (2019) MCU Up-regulation contributes to myocardial ischemia-reperfusion Injury through calpain/OPA-1–mediated mitochondrial fusion/mitophagy Inhibition. J Cell Mol Med 23(11):7830–7833. https://doi.org/10.1111/jcmm.14662
doi: 10.1111/jcmm.14662 pubmed: 31502361 pmcid: 6815825
Dhanabalan K, Mzezewa S, Huisamen B et al (2020) Mitochondrial oxidative phosphorylation function and mitophagy in ischaemic/reperfused hearts from control and high-fat diet rats: effects of long-term melatonin treatment. Cardiovasc Drugs Therapy 34(6):799–811. https://doi.org/10.1007/s10557-020-06997-9
doi: 10.1007/s10557-020-06997-9
Yogalingam G, Hwang S, Ferreira JCB et al (2013) Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Phosphorylation by Protein Kinase Cδ (PKCδ) Inhibits Mitochondria Elimination by Lysosomal-like structures following ischemia and reoxygenation-induced injury. J Biol Chem 288(26):18947–18960. https://doi.org/10.1074/jbc.M113.466870v
doi: 10.1074/jbc.M113.466870v pubmed: 23653351 pmcid: 3696670
Yan L, Yang H, Li Y et al (2014) Regulator of calcineurin 1-1L protects cardiomyocytes against hypoxia-induced apoptosis via mitophagy. J Cardiovasc Pharmacol 64(4):310–317. https://doi.org/10.1097/FJC.0000000000000121
doi: 10.1097/FJC.0000000000000121 pubmed: 24887685
Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14(11):2179–2190. https://doi.org/10.1089/ars.2010.3488
doi: 10.1089/ars.2010.3488 pubmed: 20812860 pmcid: 3085947
Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163. https://doi.org/10.1152/physrev.00013.2006
doi: 10.1152/physrev.00013.2006 pubmed: 17237344
Naryzhnaya NV, Maslov LN, Oeltgen PR (2019) Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res 80(8):1013–1030. https://doi.org/10.1002/ddr.21593
doi: 10.1002/ddr.21593 pubmed: 31823411
Andres AM, Stotland A, Queliconi BB et al (2015) A time to reap, a time to sow: mitophagy and biogenesis in cardiac pathophysiology. J Mol Cell Cardiol 78:62–72. https://doi.org/10.1016/j.yjmcc.2014.10.003
doi: 10.1016/j.yjmcc.2014.10.003 pubmed: 25444712
Kubli DA, Zhang X, Lee Y et al (2013) Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288(2):915–926. https://doi.org/10.1074/jbc.M112.411363
doi: 10.1074/jbc.M112.411363 pubmed: 23152496
Zhang SX, Zhuang LL, Liu J et al (2018) The role of Parkin protein in cardiac function and ventricular remodeling in myocardial infarction rats. Eur Rev Med Pharmacol Sci 22(15):5004–5013. https://doi.org/10.26355/eurrev_201808_15641
doi: 10.26355/eurrev_201808_15641 pubmed: 30070337
Li Y, Liu Z, Zhang Y et al (2018) PEDF protects cardiomyocytes by promoting FUNDC1–mediated mitophagy via PEDF-R under hypoxic condition. Int J Mol Med 41(6):3394–3404. https://doi.org/10.3892/ijmm.2018.3536
doi: 10.3892/ijmm.2018.3536 pubmed: 29512692 pmcid: 5881750
Zhao D, Sun Y, Tan Y et al (2018) Short-duration swimming exercise after myocardial infarction attenuates cardiac dysfunction and regulates mitochondrial quality control in aged mice. Oxid Med Cell Longev 2018:4079041. https://doi.org/10.1155/2018/4079041
doi: 10.1155/2018/4079041 pubmed: 29849892 pmcid: 5925211
Andres AM, Hernandez G, Lee P et al (2014) Mitophagy is required for acute cardioprotection by Simvastatin. Antioxid Redox Signal 21(14):1960–1973. https://doi.org/10.1089/ars.2013.5416
doi: 10.1089/ars.2013.5416 pubmed: 23901824 pmcid: 4208607
Feng Y, Zhao J, Hou H et al (2016) WDR26 promotes mitophagy of cardiomyocytes induced by hypoxia through Parkin translocation. Acta Biochim Biophys Sin (Shanghai) 48(12):1075–1084. https://doi.org/10.1093/abbs/gmw104
doi: 10.1093/abbs/gmw104 pubmed: 27797717
Hou R, Jin X, Gao Y et al (2020) Evaluation of the effects of schisandra chinensis on the myocardium of rats with hyperthyroid heart disease by using velocity vector imaging combined with the estimation of p53 Expression and calmodulin activity. Evid-Based Complement Altern Med 2020:5263834. https://doi.org/10.1155/2020/5263834
doi: 10.1155/2020/5263834
Samadi A, Ziaee M, Isikhan SY et al (2020) Effects of treatment with haloperidol and clozapine on the plasma concentrations of thyroid hormones in rats. Endocr Regul 54(2):71–76. https://doi.org/10.2478/enr-2020-0009
doi: 10.2478/enr-2020-0009 pubmed: 32597158
Qiao H, Ren H, Du H et al (2018) Liraglutide repairs the infarcted heart: the role of the SIRT1/Parkin/mitophagy pathway. Mol Med Rep 17(3):3722–3734. https://doi.org/10.3892/mmr.2018.8371
doi: 10.3892/mmr.2018.8371 pubmed: 29328405 pmcid: 5802177
Saito T, Nah J, Oka S et al (2019) An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia. J Clin Investig 129(2):802–819. https://doi.org/10.1172/JCI122035
doi: 10.1172/JCI122035 pubmed: 30511961 pmcid: 6355232
de Miranda DC, de Oliveira Faria G, Hermidorff MM et al (2021) Pre- and post-conditioning of the heart: an overview of cardioprotective signaling pathways. Curr Vasc Pharmacol 19(5):499–524. https://doi.org/10.2174/1570161119666201120160619
doi: 10.2174/1570161119666201120160619 pubmed: 33222675
Tsibulnikov SY, Maslov LN, Gorbunov AS et al (2019) A review of humoral factors in remote preconditioning of the heart. J Cardiovasc Pharmacol Therapy 24(5):403–421. https://doi.org/10.1177/1074248419841632
doi: 10.1177/1074248419841632
Gurusamy N, Lekli I, Gorbunov NV et al (2009) Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med 13(2):373–387. https://doi.org/10.1111/j.1582-4934.2008.00495.x
doi: 10.1111/j.1582-4934.2008.00495.x pubmed: 18793351
Gedik N, Thielmann M, Kottenberg E et al (2014) No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting. PLoS ONE 9(5):e96567. https://doi.org/10.1371/journal.pone.0096567
doi: 10.1371/journal.pone.0096567 pubmed: 24797938 pmcid: 4010496
Rohailla S, Clarizia N, Sourour M et al (2014) Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS ONE 9(10):e111291. https://doi.org/10.1371/journal.pone.0111291
doi: 10.1371/journal.pone.0111291 pubmed: 25347774 pmcid: 4210174
Wagner C, Tillack D, Simonis G et al (2010) Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3β, and apoptosis. Mol Cell Biochem 339(1–2):135–147. https://doi.org/10.1007/s11010-009-0377-x
doi: 10.1007/s11010-009-0377-x pubmed: 20054613
Wei C, Li H, Han L et al (2013) Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts. J Cardiovasc Pharmacol 61(5):416–422. https://doi.org/10.1097/FJC.0b013e318287d501
doi: 10.1097/FJC.0b013e318287d501 pubmed: 23364609
Hao M, Zhu S, Hu L et al (2017) Myocardial ischemic postconditioning promotes autophagy against ischemia reperfusion injury via the activation of the nNOS/AMPK/mTOR pathway. Int J Mol Sci 18(3):614. https://doi.org/10.3390/ijms18030614
doi: 10.3390/ijms18030614 pubmed: 28287478 pmcid: 5372630
Tyagi S, Singh N, Virdi J et al (2019) Diabetes abolish cardioprotective effects of remote ischemic conditioning: evidences and possible mechanisms. J Physiol Biochem 75:19–28. https://doi.org/10.1007/s13105-019-00664-w
doi: 10.1007/s13105-019-00664-w pubmed: 30729392
Han Z, Cao J, Song D et al (2014) Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice. PLoS ONE 9(1):e86838. https://doi.org/10.1371/journal.pone.0086838
doi: 10.1371/journal.pone.0086838 pubmed: 24466263 pmcid: 3900658
Krylatov AV, Maslov LN, Voronkov NS et al (2018) Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev 14(4):290–300. https://doi.org/10.2174/1573403X14666180702152436
doi: 10.2174/1573403X14666180702152436 pubmed: 29962348 pmcid: 6300799
Liu L, Jin X, Hu C-F et al (2017) Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy Via AMPK and Akt pathways. Cell Physiol Biochem 43(1):52–68. https://doi.org/10.1159/000480317
doi: 10.1159/000480317 pubmed: 28848091
Sciarretta S, Zhai P, Shao D et al (2013) Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcripti. Circ Res 113(11):1253–1264. https://doi.org/10.1161/CIRCRESAHA.113.301787
doi: 10.1161/CIRCRESAHA.113.301787 pubmed: 24081881 pmcid: 3937770
Shiomi M, Miyamae M, Takemura G et al (2014) Sevoflurane induces cardioprotection through reactive oxygen species-mediated upregulation of autophagy in isolated guinea pig hearts. J Anesth 28(4):593–600. https://doi.org/10.1007/s00540-013-1755-9
doi: 10.1007/s00540-013-1755-9 pubmed: 24337890
Wang S, Wang C, Yan F et al (2017) N-acetylcysteine attenuates diabetic myocardial ischemia reperfusion injury through inhibiting excessive autophagy. Mediators Inflamm 2017:9257291. https://doi.org/10.1155/2017/9257291
doi: 10.1155/2017/9257291 pubmed: 28265179 pmcid: 5317145
Li D, Wang J, Hou J et al (2016) Salvianolic acid B induced upregulation of miR-30a protects cardiac myocytes from ischemia/reperfusion injury. BMC Complement Altern Med 16(1):336. https://doi.org/10.1186/s12906-016-1275-x
doi: 10.1186/s12906-016-1275-x pubmed: 27586425 pmcid: 5009695
Wang Z-G, Li H, Huang Y et al (2017) Nerve growth factor-induced Akt/mTOR activation protects the ischemic heart via restoring autophagic flux and attenuating ubiquitinated protein accumulation. Oncotarget 8(3):5400–5413. https://doi.org/10.18632/oncotarget.14284
doi: 10.18632/oncotarget.14284 pubmed: 28036273
Li X, Hu X, Wang J et al (2018) Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. Int J Mol Med 42(4):1917–1924. https://doi.org/10.3892/ijmm.2018.3794
doi: 10.3892/ijmm.2018.3794 pubmed: 30066841 pmcid: 6108872
Qin L, Fan S, Jia R et al (2018) Ginsenoside Rg1 protects cardiomyocytes from hypoxia-induced injury through the PI3K/AKT/mTOR pathway. Pharmazie 73(6):349–355. https://doi.org/10.1691/ph.2018.8329
doi: 10.1691/ph.2018.8329 pubmed: 29880088
Matsui Y, Takagi H, Qu X et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion. Circ Res 100(6):914–922. https://doi.org/10.1161/01.RES.0000261924.76669.36
doi: 10.1161/01.RES.0000261924.76669.36 pubmed: 17332429
Huang L, Dai K, Chen M et al (2016) The AMPK agonist PT1 and mTOR inhibitor 3HOI-BA-01 protect cardiomyocytes after ischemia through induction of autophagy. J Cardiovasc Pharmacol Ther 21(1):70–81. https://doi.org/10.1177/1074248415581177
doi: 10.1177/1074248415581177 pubmed: 25868658
Zhang H, Liu B, Li T et al (2017) AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med 41(1):69–76. https://doi.org/10.3892/ijmm.2017.3213
doi: 10.3892/ijmm.2017.3213 pubmed: 29115402 pmcid: 5746297
Zhai P, Sciarretta S, Galeotti J et al (2011) Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ Res 109(5):502–511. https://doi.org/10.1161/CIRCRESAHA.111.249532
doi: 10.1161/CIRCRESAHA.111.249532 pubmed: 21737790 pmcid: 3158807
Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114(3):549–564. https://doi.org/10.1161/CIRCRESAHA.114.302022
doi: 10.1161/CIRCRESAHA.114.302022 pubmed: 24481845 pmcid: 3995130
Aoyagi T, Kusakari Y, Xiao C-Y et al (2012) Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Circ Physiol 303(1):H75–H85. https://doi.org/10.1152/ajpheart.00241.2012
doi: 10.1152/ajpheart.00241.2012
Zhang D, He Y, Ye X et al (2020) Activation of autophagy inhibits nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome activation and attenuates myocardial ischemia-reperfusion injury in diabetic rats. J Diabetes Investig 11(5):1126–1136. https://doi.org/10.1111/jdi.13235
doi: 10.1111/jdi.13235 pubmed: 32064785 pmcid: 7477534
Xu J, Qin X, Cai X et al (2015) Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion. Biochim Biophys Acta Mol Basis Dis 1852(2):262–270. https://doi.org/10.1016/j.bbadis.2014.05.012
doi: 10.1016/j.bbadis.2014.05.012
Giricz Z, Varga ZV, Koncsos G et al (2017) Autophagosome formation is required for cardioprotection by chloramphenicol. Life Sci 186:11–16. https://doi.org/10.1016/j.lfs.2017.07.0
doi: 10.1016/j.lfs.2017.07.0 pubmed: 28778689 pmcid: 6242268
Bian X, Teng T, Zhao H et al (2018) Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells. Free Radic Res 52(1):80–91. https://doi.org/10.1080/10715762.2017.1414949
doi: 10.1080/10715762.2017.1414949 pubmed: 29216769
Lu Y, Bu M, Yun H (2019) Sevoflurane prevents hypoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibiting PI3KC3-mediated autophagy. Hum Cell 32(2):150–159. https://doi.org/10.1007/s13577-018-00230-4
doi: 10.1007/s13577-018-00230-4 pubmed: 30542917
Yi RF, Lin JZ, Cui L et al (2019) Role of hexokinase II in the changes of autophagic flow in cardiomyocytes of mice with ischemia-hypoxia in vitro. Zhonghua Shao Shang Za Zhi 35(2):116–124. https://doi.org/10.3760/cma.j.issn.1009-2587.2019.02.007
doi: 10.3760/cma.j.issn.1009-2587.2019.02.007 pubmed: 30798578
Chen L, Hahn H, Wu G et al (2001) Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA 98(20):11114–11119. https://doi.org/10.1073/pnas.191369098
doi: 10.1073/pnas.191369098 pubmed: 11553773 pmcid: 58692
Dang M, Zeng X, Chen B et al (2019) Soluble receptor for advance glycation end-products inhibits ischemia/reperfusion-induced myocardial autophagy via the STAT3 pathway. Free Radic Biol Med 130:107–119. https://doi.org/10.1016/j.freeradbiomed.2018.10.437
doi: 10.1016/j.freeradbiomed.2018.10.437 pubmed: 30367996
McCormick J, Suleman N, Scarabelli TM et al (2012) STAT1 deficiency in the heart protects against myocardial infarction by enhancing autophagy. J Cell Mol Med 16(2):386–393. https://doi.org/10.1111/j.1582-4934.2011.01323.x
doi: 10.1111/j.1582-4934.2011.01323.x pubmed: 21447043 pmcid: 3823301
Hoshino A, Matoba S, Iwai-Kanai E et al (2012) p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol 52(1):175–184. https://doi.org/10.1016/j.yjmcc.2011.10.008
doi: 10.1016/j.yjmcc.2011.10.008 pubmed: 22044588
Zeng M, Wei X, Wu Z et al (2013) NF-κB-mediated induction of autophagy in cardiac ischemia/reperfusion injury. Biochem Biophys Res Commun 436(2):180–185. https://doi.org/10.1016/j.bbrc.2013.05.070
doi: 10.1016/j.bbrc.2013.05.070 pubmed: 23727575
Gui L, Liu B, Lv G (2016) Hypoxia induces autophagy in cardiomyocytes via a hypoxia-inducible factor 1-dependent mechanism. Exp Ther Med 11(6):2233–2239. https://doi.org/10.3892/etm.2016.3190
doi: 10.3892/etm.2016.3190 pubmed: 27284306 pmcid: 4887955
Zhao M, Zhu P, Fujino M et al (2016) 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Biochem Biophys Res Commun 479(4):663–669. https://doi.org/10.1016/j.bbrc.2016.09.156
doi: 10.1016/j.bbrc.2016.09.156 pubmed: 27693692
Cortes CJ, La Spada AR (2019) TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease: Molecular mechanisms, cellular processes, and emerging therapeutic opportunities. Neurobiol Dis 122:83–93. https://doi.org/10.1016/j.nbd.2018.05.012
doi: 10.1016/j.nbd.2018.05.012 pubmed: 29852219
Pan B, Zhang H, Cui T et al (2017) TFEB activation protects against cardiac proteotoxicity via increasing autophagic flux. J Mol Cell Cardiol 113:51–62. https://doi.org/10.1016/j.yjmcc.2017
doi: 10.1016/j.yjmcc.2017 pubmed: 28993153 pmcid: 5656243
Song H, Feng X, Zhang H et al (2019) METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15(8):1419–1437. https://doi.org/10.1080/15548627
doi: 10.1080/15548627 pubmed: 30870073 pmcid: 6613905
Godar RJ, Ma X, Liu H et al (2015) Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury. Autophagy 11(9):1537–1560. https://doi.org/10.1080/15548627.2015.1063768
doi: 10.1080/15548627.2015.1063768 pubmed: 26103523 pmcid: 4590628
van der Pol E, Böing AN, Harrison P et al (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705. https://doi.org/10.1124/pr.112.005983
doi: 10.1124/pr.112.005983 pubmed: 22722893
Sluijter JPG, Davidson SM, Boulanger CM et al (2018) Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 114(1):19–34. https://doi.org/10.1093/cvr/cvx211
doi: 10.1093/cvr/cvx211 pubmed: 29106545
Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30(1):255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326
doi: 10.1146/annurev-cellbio-101512-122326 pubmed: 25288114
Valadi H, Valadi A, Adler L et al (2001) An improved gas distribution system for anaerobic screening of multiple microbial cultures. J Microbiol Methods 47(1):51–57. https://doi.org/10.1016/s0167-7012(01)00288-3
doi: 10.1016/s0167-7012(01)00288-3 pubmed: 11566227
Skog J, Würdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476. https://doi.org/10.1038/ncb1800
doi: 10.1038/ncb1800 pubmed: 19011622 pmcid: 3423894
Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3(11):e3694. https://doi.org/10.1371/journal.pone.0003694
doi: 10.1371/journal.pone.0003694 pubmed: 19002258 pmcid: 2577891
Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. https://doi.org/10.1038/ncb1596
doi: 10.1038/ncb1596 pubmed: 17486113
Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Circ Physiol 292(6):H3052–H3056. https://doi.org/10.1152/ajpheart.01355.2006
doi: 10.1152/ajpheart.01355.2006
Bang C, Batkai S, Dangwal S et al (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig 124(5):2136–2146. https://doi.org/10.1172/JCI70577
doi: 10.1172/JCI70577 pubmed: 24743145 pmcid: 4001534
van Balkom BWM, de Jong OG, Smits M et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121(19):3997–4006. https://doi.org/10.1182/blood-2013-02-478925
doi: 10.1182/blood-2013-02-478925 pubmed: 23532734
Jiang X-X, Liu G-Y, Lei H et al (2018) Activation of transient receptor potential vanilloid 1 protects the heart against apoptosis in ischemia/reperfusion injury through upregulating the PI3K/Akt signaling pathway. Int J Mol Med 41(3):1724–1730. https://doi.org/10.3892/ijmm.2017.3338
doi: 10.3892/ijmm.2017.3338 pubmed: 29286076
Fromm B, Billipp T, Peck LE et al (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49(1):213–242. https://doi.org/10.1146/annurev-genet-120213-092023
doi: 10.1146/annurev-genet-120213-092023 pubmed: 26473382 pmcid: 4743252
Xiao J, Zhu X, He B et al (2011) MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci 18(1):35. https://doi.org/10.1186/1423-0127-18-35
doi: 10.1186/1423-0127-18-35 pubmed: 21631941 pmcid: 3127824
Bo L, Su-Ling D, Fang L et al (2014) Autophagic program is regulated by miR-325. Cell Death Differ 21(6):967–977. https://doi.org/10.1038/cdd.2014.18
doi: 10.1038/cdd.2014.18 pubmed: 24531537 pmcid: 4013515
Li J, Rohailla S, Gelber N et al (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109(5):423. https://doi.org/10.1007/s00395-014-0423-z
doi: 10.1007/s00395-014-0423-z pubmed: 25060662
Li X, Zeng Z, Li Q et al (2015) Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget 6(22):18829–18844. https://doi.org/10.18632/oncotarget.4774
doi: 10.18632/oncotarget.4774 pubmed: 26299920 pmcid: 4643066
Chen Q, Zhou Y, Richards AM et al (2016) Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways. Biochem Biophys Res Commun 474(1):168–174. https://doi.org/10.1016/j.bbrc.2016.04.090
doi: 10.1016/j.bbrc.2016.04.090 pubmed: 27105917
Zhao P, Zhang BL, Liu K et al (2018) Overexpression of miR-638 attenuated the effects of hypoxia/reoxygenation treatment on cell viability, cell apoptosis and autophagy by targeting ATG5 in the human cardiomyocytes. Eur Rev Med Pharmacol Sci 22(23):8462–8471. https://doi.org/10.26355/eurrev_201812_16546
doi: 10.26355/eurrev_201812_16546 pubmed: 30556888
Shao H, Yang L, Wang L et al (2018) MicroRNA-34a protects myocardial cells against ischemia–reperfusion injury through inhibiting autophagy via regulating TNFα expression. Biochem Cell Biol 96(3):349–354. https://doi.org/10.1139/bcb-2016-0158
doi: 10.1139/bcb-2016-0158 pubmed: 28544853
Liu X, Deng Y, Xu Y et al (2018) MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol 118:133–146. https://doi.org/10.1016/j.yjmcc.2018.03.018
doi: 10.1016/j.yjmcc.2018.03.018 pubmed: 29608885
Zhang C, Zhang C, Wang H et al (2019) Effects of miR–103a–3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. Int J Mol Med 43(5):1951–1960. https://doi.org/10.3892/ijmm.2019.4128
doi: 10.3892/ijmm.2019.4128 pubmed: 30864677 pmcid: 6443343
Zhu Q, Hu F (2019) Antagonism of miR-429 ameliorates anoxia/reoxygenation injury in cardiomyocytes by enhancing MO25/LKB1/AMPK mediated autophagy. Life Sci 235:116842. https://doi.org/10.1016/j.lfs.2019.116842
doi: 10.1016/j.lfs.2019.116842 pubmed: 31494170
Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7(5):582–585. https://doi.org/10.4161/rna.7.5.13216
doi: 10.4161/rna.7.5.13216 pubmed: 20930520 pmcid: 3073254
Yoon J-H, Abdelmohsen K, Gorospe M (2013) Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425(19):3723–3730. https://doi.org/10.1016/j.jmb.2012.11.024
doi: 10.1016/j.jmb.2012.11.024 pubmed: 23178169
Huang Z, Ye B, Wang Z et al (2018) Inhibition of LncRNA-HRIM increases cell viability by regulating autophagy levels during hypoxia/reoxygenation in myocytes. Cell Physiol Biochem 46(4):1341–1351. https://doi.org/10.1159/000489149
doi: 10.1159/000489149 pubmed: 29689566
Ma M, Hui J, Zhang Q et al (2018) Long non-coding RNA nuclear-enriched abundant transcript 1 inhibition blunts myocardial ischemia reperfusion injury via autophagic flux arrest and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 277:113–122. https://doi.org/10.1016/j.atherosclerosis.2018.08.031
doi: 10.1016/j.atherosclerosis.2018.08.031 pubmed: 30205319
Kong F, Jin J, Lv X et al (2019) Long noncoding RNA RMRP upregulation aggravates myocardial ischemia-reperfusion injury by sponging miR-206 to target ATG3 expression. Biomed Pharmacother 109:716–725. https://doi.org/10.1016/j.biopha.2018.10.079
doi: 10.1016/j.biopha.2018.10.079 pubmed: 30551524
Maslov LN, Mukhomedzyanov AV, Sementsov AS (2017) Trigger and signal mechanisms and the end effector of the cardioprotective effect of remote postconditioning of the heart. Neurosci Behav Physiol 47(2):186–189. https://doi.org/10.1007/s11055-016-0384-9
doi: 10.1007/s11055-016-0384-9
Yu X, Ge L, Niu L et al (2018) The dual role of inducible nitric oxide synthase in myocardial ischemia/reperfusion injury: friend or foe? Oxid Med Cell Longev 2018:1–7. https://doi.org/10.1155/2018/8364848
doi: 10.1155/2018/8364848
Rabkin SW (2007) Nitric oxide-induced cell death in the heart: the role of autophagy. Autophagy 3(4):347–349. https://doi.org/10.4161/auto.4054
doi: 10.4161/auto.4054 pubmed: 17438363
Yuan H, Perry CN, Huang C et al (2009) LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Circ Physiol 296(2):H470–H479. https://doi.org/10.1152/ajpheart.01051.2008
doi: 10.1152/ajpheart.01051.2008
Lin L, Xu J, Ye Y et al (2015) Isosorbide dinitrate inhibits mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of angiotensin II type 1 receptor. J Cardiovasc Pharmacol 65(1):1–7. https://doi.org/10.1097/FJC.0000000000000122
doi: 10.1097/FJC.0000000000000122 pubmed: 24887682
Cao J, Xie H, Sun Y et al (2015) Sevoflurane post-conditioning reduces rat myocardial ischemia reperfusion injury through an increase in NOS and a decrease in phopshorylated NHE1 levels. Int J Mol Med 36(6):1529–1537. https://doi.org/10.3892/ijmm.2015.2366
doi: 10.3892/ijmm.2015.2366 pubmed: 26459736 pmcid: 4678156
Qiao S, Sun Y, Sun B et al (2019) Sevoflurane postconditioning protects against myocardial ischemia/reperfusion injury by restoring autophagic flux via an NO-dependent mechanism. Acta Pharmacol Sin 40(1):35–45. https://doi.org/10.1038/s41401-018-0066-y
doi: 10.1038/s41401-018-0066-y pubmed: 30002490
Ryter SW, Ma KC, Choi AMK (2018) Carbon monoxide in lung cell physiology and disease. Am J Physiol Physiol 314(2):C211–C227. https://doi.org/10.1152/ajpcell.00022.2017
doi: 10.1152/ajpcell.00022.2017
Chen D, Jin Z, Zhang J et al (2016) HO-1 protects against hypoxia/reoxygenation-induced mitochondrial dysfunction in H9c2 cardiomyocytes. PLoS ONE 11(5):e0153587. https://doi.org/10.1371/journal.pone.0153587
doi: 10.1371/journal.pone.0153587 pubmed: 27138700 pmcid: 4854406
Zhang Q-Y, Jin H-F, Chen S et al (2018) Hydrogen sulfide regulating myocardial structure and function by targeting cardiomyocyte autophagy. Chin Med J 131(7):839–844. https://doi.org/10.4103/0366-6999.228249
doi: 10.4103/0366-6999.228249 pubmed: 29578128 pmcid: 5887743
Osipov RM, Robich MP, Feng J et al (2009) Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 54(4):287–297. https://doi.org/10.1097/FJC.0b013e3181b2b72b
doi: 10.1097/FJC.0b013e3181b2b72b pubmed: 19620880
Osipov RM, Robich MP, Feng J et al (2010) Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypass. Interact Cardiovasc Thorac Surg 10(4):506–512. https://doi.org/10.1510/icvts.2009.219535
doi: 10.1510/icvts.2009.219535 pubmed: 20051450
Xie H, Xu Q, Jia J et al (2015) Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochem Biophys Res Commun 458(3):632–638. https://doi.org/10.1016/j.bbrc.2015.02.017
doi: 10.1016/j.bbrc.2015.02.017 pubmed: 25684185
Jiang H, Xiao J, Kang B et al (2016) PI3K/SGK1/GSK3β signaling pathway is involved in inhibition of autophagy in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation by hydrogen sulfide. Exp Cell Res 345(2):134–140. https://doi.org/10.1016/j.yexcr.2015.07.005
doi: 10.1016/j.yexcr.2015.07.005 pubmed: 26163895
Xiao J, Zhu X, Kang B et al (2015) Hydrogen sulfide attenuates myocardial hypoxia-reoxygenation injury by inhibiting autophagy via mTOR activation. Cell Physiol Biochem 37(6):2444–2453. https://doi.org/10.1159/000438597
doi: 10.1159/000438597 pubmed: 26658637
Liang B, Xiao T, Long J et al (2017) Hydrogen sulfide alleviates myocardial fibrosis in mice with alcoholic cardiomyopathy by downregulating autophagy. Int J Mol Med 40(6):1781–1791. https://doi.org/10.3892/ijmm.2017.3191
doi: 10.3892/ijmm.2017.3191 pubmed: 29039471 pmcid: 5716447
Bai Y, Yang Y, Mu X et al (2018) Hydrogen sulfide alleviates acute myocardial ischemia injury by modulating autophagy and inflammation response under oxidative stress. Oxid Med Cell Longev 2018:1–17. https://doi.org/10.1155/2018/3402809
doi: 10.1155/2018/3402809
Chen J, Gao J, Sun W et al (2016) Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 220:681–692. https://doi.org/10.1016/j.ijcard.2016.06.200
doi: 10.1016/j.ijcard.2016.06.200 pubmed: 27393850
Sciarretta S, Zhai P, Shao D et al (2012) Rheb is a critical regulator of autophagy during myocardial ischemia. Circulation 125(9):1134–1146. https://doi.org/10.1161/CIRCULATIONAHA.111.078212
doi: 10.1161/CIRCULATIONAHA.111.078212 pubmed: 22294621 pmcid: 3337789
Chen HH, Mekkaoui C, Cho H et al (2013) Fluorescence tomography of rapamycin-induced autophagy and cardioprotection in vivo. Circ Cardiovasc Imaging 6(3):441–447. https://doi.org/10.1161/CIRCIMAGING.112.000074
doi: 10.1161/CIRCIMAGING.112.000074 pubmed: 23537953 pmcid: 3805276
Yang S-S, Liu Y-B, Yu J-B et al (2010) Rapamycin protects heart from ischemia/reperfusion injury independent of autophagy by activating PI3 kinase-Akt pathway and mitochondria K(ATP) channel. Pharmazie 65(10):760–765. https://doi.org/10.1691/ph.2010.0576
doi: 10.1691/ph.2010.0576 pubmed: 21105579
Loos B, Genade S, Ellis B et al (2011) At the core of survival: autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp Cell Res 317(10):1437–1453. https://doi.org/10.1016/j.yexcr.2011.03.011
doi: 10.1016/j.yexcr.2011.03.011 pubmed: 21420401
Zeng C, Li H, Fan Z et al (2016) Crocin-elicited autophagy rescues myocardial ischemia/reperfusion injury via paradoxical mechanisms. Am J Chin Med 44(3):515–530. https://doi.org/10.1142/S0192415X16500282
doi: 10.1142/S0192415X16500282 pubmed: 27109157
Hermann R, Vélez DE, Rusiecki TM et al (2015) Effects of 3-methyladenine on isolated left atria subjected to simulated ischaemia-reperfusion. Clin Exp Pharmacol Physiol 42(1):41–51. https://doi.org/10.1111/1440-1681.12323
doi: 10.1111/1440-1681.12323 pubmed: 25311855
Zhou B, Leng Y, Lei SQ et al (2017) AMPK activation restores ischemic post-conditioning cardioprotection in STZ-induced type 1 diabetic rats: Role of autophagy. Mol Med Rep 16(3):3648–3656. https://doi.org/10.3892/mmr.2017.7033
doi: 10.3892/mmr.2017.7033 pubmed: 28765969
Ling Y, Chen G, Deng Y et al (2016) Polydatin post-treatment alleviates myocardial ischaemia/reperfusion injury by promoting autophagic flux. Clin Sci 130(18):1641–1653. https://doi.org/10.1042/CS20160082
doi: 10.1042/CS20160082
Przyklenk K, Undyala VVR, Wider J et al (2011) Acute induction of autophagy as a novel strategy for cardioprotection: getting to the heart of the matter. Autophagy 7:432–433. https://doi.org/10.4161/auto.7.4.14395
doi: 10.4161/auto.7.4.14395 pubmed: 21187719 pmcid: 3679089
Yang K, Xu C, Li X et al (2013) Combination of D942 with curcumin protects cardiomyocytes from ischemic damage through promoting autophagy. J Cardiovasc Pharmacol Therapy 18(6):570–581. https://doi.org/10.1177/1074248413503495
doi: 10.1177/1074248413503495
Wu X, He L, Cai Y et al (2013) Induction of autophagy contributes to the myocardial protection of valsartan against ischemia-reperfusion injury. Mol Med Rep 8(6):1824–1830. https://doi.org/10.3892/mmr.2013.1708
doi: 10.3892/mmr.2013.1708 pubmed: 24084854
Xie M, Kong Y, Tan W et al (2014) Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129(10):1139–1151. https://doi.org/10.1161/CIRCULATIONAHA.113.002416
doi: 10.1161/CIRCULATIONAHA.113.002416 pubmed: 24396039 pmcid: 3984913
Wu X, Zheng D, Qin Y et al (2017) Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochem Biophys Res Commun 492(2):262–268. https://doi.org/10.1016/j.bbrc.2017.08.064
doi: 10.1016/j.bbrc.2017.08.064 pubmed: 28830813
Zhang J, Nadtochiy SM, Urciuoli WR et al (2016) The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy. Am J Physiol Heart Circ Physiol 310(1):H29–H38. https://doi.org/10.1152/ajpheart.00926.2014
doi: 10.1152/ajpheart.00926.2014 pubmed: 26519034
Liu L, Wu Y, Huang X (2016) Orientin protects myocardial cells against hypoxia-reoxygenation injury through induction of autophagy. Eur J Pharmacol 776:90–98. https://doi.org/10.1016/j.ejphar.2016.02.037
doi: 10.1016/j.ejphar.2016.02.037 pubmed: 26875637
Ma Y, Gai Y, Yan J et al (2016) Puerarin attenuates anoxia/reoxygenation injury through enhancing Bcl-2 associated athanogene 3 expression, a modulator of apoptosis and autophagy. Med Sci Monit 22:977–983. https://doi.org/10.12659/msm.897379
doi: 10.12659/msm.897379 pubmed: 27011313 pmcid: 4809386
Zhao R, Xie E, Yang X et al (2019) Alliin alleviates myocardial ischemia-reperfusion injury by promoting autophagy. Biochem Biophys Res Commun 512(2):236–243. https://doi.org/10.1016/j.bbrc.2019.03.046
doi: 10.1016/j.bbrc.2019.03.046 pubmed: 30885435
Ren Z, Xiao W, Zeng Y et al (2019) Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux. Int J Mol Med 43(3):1321–1330. https://doi.org/10.3892/ijmm.2019.4071
doi: 10.3892/ijmm.2019.4071 pubmed: 30664197 pmcid: 6365083
Yan J, Yan JY, Wang YX et al (2019) Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway. Br J Pharmacol 176(17):3126–3142. https://doi.org/10.1111/bph.14706
doi: 10.1111/bph.14706 pubmed: 31077347 pmcid: 6692641
Meyer G, Czompa A, Reboul C et al (2013) The cellular autophagy markers beclin-1 and LC3B-II are increased during reperfusion in fibrillated mouse hearts. Curr Pharm Des 19(39):6912–6918. https://doi.org/10.2174/138161281939131127122510
doi: 10.2174/138161281939131127122510 pubmed: 23590156
Cao X, Chen A, Yang P et al (2013) Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. Biochem Biophys Res Commun 441(4):935–940. https://doi.org/10.1016/j.bbrc.2013.10.166
doi: 10.1016/j.bbrc.2013.10.166 pubmed: 24216106
Bouhidel JO, Wang P, Siu KL et al (2015) Netrin-1 improves post-injury cardiac function in vivo via DCC/NO-dependent preservation of mitochondrial integrity, while attenuating autophagy. Biochim Biophys Acta Mol Basis Dis 1852(2):277–289. https://doi.org/10.1016/j.bbadis.2014.06.005
doi: 10.1016/j.bbadis.2014.06.005
Xiao J, Zhu X, Ji G et al (2014) Ulinastatin protects cardiomyocytes against ischemia-reperfusion injury by regulating autophagy through mTOR activation. Mol Med Rep 10(4):1949–1953. https://doi.org/10.3892/mmr.2014.2450
doi: 10.3892/mmr.2014.2450 pubmed: 25109305
Yao T, Ying X, Zhao Y et al (2015) Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal 22(8):633–650. https://doi.org/10.1089/ars.2014.5887
doi: 10.1089/ars.2014.5887 pubmed: 25365634 pmcid: 4346660
Jia Z, Lin L, Huang S et al (2017) Inhibition of autophagy by berberine enhances the survival of H9C2 myocytes following hypoxia. Mol Med Rep 16(2):1677–1684. https://doi.org/10.3892/mmr.2017.6770
doi: 10.3892/mmr.2017.6770 pubmed: 28627660 pmcid: 5562068
Xie H, Liu Q, Qiao S et al (2015) Delayed cardioprotection by sevoflurane preconditioning: a novel mechanism via inhibiting Beclin 1-mediated autophagic cell death in cardiac myocytes exposed to hypoxia/reoxygenation injury. Int J Clin Exp Pathol 8(1):217–226
pubmed: 25755708 pmcid: 4348939
Sun Z, Han J, Zhao W et al (2014) TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction. Int J Mol Sci 15(10):18362–18380. https://doi.org/10.3390/ijms151018362
doi: 10.3390/ijms151018362 pubmed: 25314299 pmcid: 4227220
Wang B, Zhong S, Zheng F et al (2015) N-n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. Oncotarget 6(28):24709–24721. https://doi.org/10.18632/oncotarget.5077
doi: 10.18632/oncotarget.5077 pubmed: 26359352 pmcid: 4694790
Zhou LY, Zhai M, Huang Y et al (2019) The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ 26(7):1299–1315. https://doi.org/10.1038/s41418-018-0206-4
doi: 10.1038/s41418-018-0206-4 pubmed: 30349076
Zuo Z, Zuo P, Sheng Z et al (2019) Tetramethylprazine attenuates myocardial ischemia/reperfusion injury through modulation of autophagy. Life Sci 239:117016. https://doi.org/10.1016/j.lfs.2019.117016
doi: 10.1016/j.lfs.2019.117016 pubmed: 31678281
Jin P, Li L-H, Shi Y et al (2020) Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene 767:145075. https://doi.org/10.1016/j.gene.2020.145075
doi: 10.1016/j.gene.2020.145075 pubmed: 32858179
Liu TJ, Yeh YC, Lee WL et al (2020) Insulin ameliorates hypoxia-induced autophagy, endoplasmic reticular stress and apoptosis of myocardial cells: In vitro and ex vivo models. Eur J Pharmacol 880:173125. https://doi.org/10.1016/j.ejphar.2020.173125
doi: 10.1016/j.ejphar.2020.173125 pubmed: 32360347
Yue LJ, Zhu XY, Li RS et al (2019) S-allyl-cysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. Int J Mol Med 44(5):1943–1951. https://doi.org/10.3892/ijmm.2019.4351
doi: 10.3892/ijmm.2019.4351 pubmed: 31573046 pmcid: 6777694
Li C, Mu N, Gu C et al (2020) Metformin mediates cardioprotection against aging-induced ischemic necroptosis. Aging Cell 19(2):e13096. https://doi.org/10.1111/acel.13096
doi: 10.1111/acel.13096 pubmed: 31944526 pmcid: 6996959

Auteurs

Sergey V Popov (SV)

Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.

Alexander V Mukhomedzyanov (AV)

Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.

Nikita S Voronkov (NS)

Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.

Ivan A Derkachev (IA)

Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.

Alla A Boshchenko (AA)

Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.

Feng Fu (F)

School of Basic Medicine, Fourth Military Medical University, No.169, West Changle Road, Xi'an, 710032, China.

Galina Z Sufianova (GZ)

Tyumen State Medical University, Tyumen, Russia, 625023.

Maria S Khlestkina (MS)

Tyumen State Medical University, Tyumen, Russia, 625023.

Leonid N Maslov (LN)

Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012. maslov@cardio-tomsk.ru.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH