Design, Synthesis, α-Amylase/α-Glucosidase Inhibition Assay, Induced Fit Docking Study of New Hybrid Compounds Containing 4H-Pyrano[2,3-d]pyrimidine, 1H-1,2,3-Triazole and D-Glucose Components.
4H-pyrano[2,3-d]pyrimidines
hybrid compounds
induced fit docking
sugar azide
type 2 diabetes
Journal
Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
received:
21
07
2022
accepted:
21
11
2022
pubmed:
22
11
2022
medline:
28
12
2022
entrez:
21
11
2022
Statut:
ppublish
Résumé
In this study, the click chemistry between N-propargyl derivatives of substituted 4H-pyrano[2,3-d]pyrimidines and tetra-O-acetyl-α-d-glucopyranosyl azide carried out under catalytic conditions using catalyst CuI@Montmorillonite and additive N,N-diisopropylethylamine (DIPEA). The yields of obtained hybrid compounds having 4H-pyrano[2,3-d]pyrimidine connected to 1H-1,2,3-triazole rings were about 85-94 %. All these synthesized hybrid compounds were examined for in vitro α-amylase (with IC
Identifiants
pubmed: 36408921
doi: 10.1002/cbdv.202200680
doi:
Substances chimiques
alpha-Glucosidases
EC 3.2.1.20
Glucose
IY9XDZ35W2
pyrimidine
K8CXK5Q32L
Glucosidases
EC 3.2.1.-
alpha-Amylases
EC 3.2.1.1
Amylases
EC 3.2.1.-
Triazoles
0
Glycoside Hydrolase Inhibitors
0
Pyrimidines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202200680Subventions
Organisme : Vietnam National Foundation for Science and Technology Development (NAFOSTED)
ID : 104.01-2020.01
Informations de copyright
© 2022 Wiley-VHCA AG, Zurich, Switzerland.
Références
WHO, Geneva (Switzerland), 2021.
D. Himanshu, W. Ali, M. Wamique, ‘Type 2 diabetes mellitus: pathogenesis and genetic diagnosis’, J. Diabetes Metab. Disord. 2020, 19, 1959-1966.
R. Viner, B. White, D. Christie, ‘Type 2 diabetes in adolescents: a severe phenotype posing major clinical challenges and public health burden’, Lancet 2017, 389, 2252-2260.
P. Tomasik, D. Horton, in Adv. Carbohydr. Chem. Biochem., Vol. 68 (Ed.: D. Horton), Academic Press, 2012, pp. 59-436.
M. Hanefeld, G. Mertes, in Encyclopedia of Endocrine Diseases (Second Edition) (Eds.: I. Huhtaniemi, L. Martini), Academic Press, Oxford, 2019, pp. 238-244.
V. Bellou, L. Belbasis, I. Tzoulaki, E. Evangelou, ‘Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses’, PLoS One 2018, 13, e0194127.
L. Suresh, Y. Poornachandra, S. Kanakaraju, C. Ganesh Kumar, G. V. P. Chandramouli, ‘One-pot three-component domino protocol for the synthesis of novel pyrano[2,3-d]pyrimidines as antimicrobial and anti-biofilm agents’, Org. Biomol. Chem. 2015, 13, 7294-7306.
A. R. Bhat, R. S. Dongre, F. A. Almalki, M. Berredjem, M. Aissaoui, R. Touzani, T. B. Hadda, M. S. Akhter, ‘Synthesis, biological activity and POM/DFT/docking analyses of annulated pyrano[2,3-d]pyrimidine derivatives: Identification of antibacterial and antitumor pharmacophore sites’, Bioorg. Chem. 2021, 106, 104480.
M. H. M. Abd El-Azim, M. A. Aziz, S. M. Mouneir, A. F. EL-Farargy, W. S. Shehab, ‘Ecofriendly synthesis of pyrano[2,3-d]pyrimidine derivatives and related heterocycles with anti-inflammatory activities’, Arch. Pharm. 2020, 353, 2000084.
M. N. M. Yousif, A.-R. B. A. El-Gazzar, A. A. Fayed, M. A. El-Manawaty, N. M. Yousif, ‘Synthesis and cytotoxic evaluation of novel chromenes and chromene[2,3-d]pyrimidines’, J. Appl. Pharmacol. 2020, 10, 35-43.
M. D. Naik, Y. D. Bodke, P. J. K. Naik, ‘An efficient multicomponent synthesis of 1H-pyrano[2,3-d]pyrimidine-2,4(3H,5H)-dione derivatives and evaluation of their α-amylase and α-glucosidase inhibitory activity’, J. Chem. Res. 2021, 45, 228-236.
N. E. A. Abd El-Sattar, E. H. K. Badawy, E. Z. Elrazaz, N. S. M. Ismail, ‘Discovery of pyrano[2,3-d]pyrimidine-2,4-dione derivatives as novel PARP-1 inhibitors: design, synthesis and antitumor activity’, RSC Adv. 2021, 11, 4454-4464.
A. Yousefi, R. Yousefi, F. Panahi, S. Sarikhani, A. R. Zolghadr, A. Bahaoddini, A. Khalafi-Nezhad, ‘Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications’, Int. J. Biol. Macromol. 2015, 78, 46-55.
H. C. Kolb, M. G. Finn, K. B. Sharpless, ‘Click Chemistry: Diverse Chemical Function from a Few Good Reactions’, Angew. Chem. Int. Ed. 2001, 40, 2004-2021;
Angew. Chem. 2001, 113, 2056-2075.
C. W. Tornøe, C. Christensen, M. Meldal, ‘Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides’, J. Org. Chem. 2002, 67, 3057-3064.
M. A. A. Mohamed, O. A. Abd Allah, A. A. Bekhit, A. M. Kadry, A. M. M. El-Saghier, ‘Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids’, J. Heterocycl. Chem. 2020, 57, 2365-2378.
J. N. Sangshetti, R. R. Nagawade, D. B. Shinde, ‘Synthesis of novel 3-(1-(1-substituted piperidin-4-yl)-1H-1,2,3-triazol-4-yl)-1,2,4-oxadiazol-5(4H)-one as antifungal agents’, Bioorg. Med. Chem. Lett. 2009, 19, 3564-3567.
J.-L. Yu, Q.-P. Wu, Q.-S. Zhang, Y.-H. Liu, Y.-Z. Li, Z.-M. Zhou, ‘Synthesis and antitumor activity of novel 2′,3′-dideoxy-2′,3′-diethanethionucleosides bearing 1,2,3-triazole residues’, Bioorg. Med. Chem. Lett. 2010, 20, 240-243.
V. Pokrovskaya, V. Belakhov, M. Hainrichson, S. Yaron, T. Baasov, ‘Design, Synthesis, and Evaluation of Novel Fluoroquinolone-Aminoglycoside Hybrid Antibiotics’, J. Med. Chem. 2009, 52, 2243-2254.
E. O. Yeye, Kanwal, K. Mohammed Khan, S. Chigurupati, A. Wadood, A. Ur Rehman, S. Perveen, M. Kannan Maharajan, S. Shamim, S. Hameed, S. A. Aboaba, M. Taha, ‘Syntheses, in vitro α-amylase and α-glucosidase dual inhibitory activities of 4-amino-1,2,4-triazole derivatives their molecular docking and kinetic studies’, Bioorg. Med. Chem. 2020, 28, 115467.
D. R. Buckle, C. J. M. Rockell, H. Smith, B. A. Spicer, ‘Studies on 1,2,3,-triazoles. 10. Synthesis and antiallergic properties of 9-oxo-1H,9H-benzothiopyrano[2,3-d]-1,2,3-triazoles and their S-oxides’, J. Med. Chem. 1984, 27, 223-227.
A. I. Mohammed, N. H. Mansour, L. S. Mahdi, ‘Synthesis and antibacterial activity of 1-N-(β-d-glucopyranosyl)-4-((1-substituted-1H-1,2,3-triazol-4-yl)ethoxymethyl)-1,2,3-triazoles’, Arab. J. Chem. 2017, 10, S3508-S3514.
P. Chittepu, V. R. Sirivolu, F. Seela, ‘Nucleosides and oligonucleotides containing 1,2,3-triazole residues with nucleobase tethers: Synthesis via the azide-alkyne ‘click’ reaction’, Bioorg. Med. Chem. 2008, 16, 8427-8439.
A. Iraji, D. Shareghi-Brojeni, S. Mojtabavi, M. A. Faramarzi, T. Akbarzadeh, M. Saeedi, ‘Cyanoacetohydrazide linked to 1,2,3-triazole derivatives: a new class of α-glucosidase inhibitors’, Sci. Rep. 2022, 12, 8647.
N. Anand, N. Jaiswal, S. K. Pandey, A. K. Srivastava, R. P. Tripathi, ‘Application of click chemistry towards an efficient synthesis of 1,2,3-1H-triazolyl glycohybrids as enzyme inhibitors’, Carbohydr. Res. 2011, 346, 16-25.
M. R. Senger, L. d C A Gomes, S. B. Ferreira, C. R. Kaiser, V. F. Ferreira, F. P. Silva Jr, ‘Kinetics Studies on the Inhibition Mechanism of Pancreatic α-Amylase by Glycoconjugated 1H-1,2,3-Triazoles: A New Class of Inhibitors with Hypoglycemiant Activity’, ChemBioChem 2012, 13, 1584-1593.
D. R. da Rocha, W. C. Santos, E. S. Lima, V. F. Ferreira, ‘Synthesis of 1,2,3-triazole glycoconjugates as inhibitors of α-glucosidases’, Carbohydr. Res. 2012, 350, 14-19.
R. Périon, V. Ferrières, M. Isabel García-Moreno, C. Ortiz Mellet, R. Duval, J. M. García Fernández, D. Plusquellec, ‘1,2,3-Triazoles and related glycoconjugates as new glycosidase inhibitors’, Tetrahedron 2005, 61, 9118-9128.
F. de Carvalho da Silva, M. F. d. C. Cardoso, P. G. Ferreira, V. F. Ferreira, in Chemistry of 1,2,3-triazoles (Eds.: W. Dehaen, V. A. Bakulev), Springer International Publishing, Cham, 2015, pp. 117-165.
N. Asemanipoor, M. Mohammadi-Khanaposhtani, S. Moradi, M. Vahidi, M. Asadi, M. A. Faramarzi, M. Mahdavi, M. Biglar, B. Larijani, H. Hamedifar, M. H. Hajimiri, ‘Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors’, Bioorg. Chem. 2020, 95, 103482.
Y. Yang, H. Hahne, B. Kuster, S. H. L. Verhelst, ‘A simple and effective cleavable linker for chemical proteomics applications’, Mol. Cell. Proteomics 2013, 12, 237-244.
N. D. Thanh, D. S. Hai, N. T. T. Ha, D. T. Tung, C. T. Le, H. T. K. Van, V. N. Toan, D. N. Toan, L. H. Dang, ‘Synthesis, biological evaluation and molecular docking study of 1,2,3-1H-triazoles having 4H-pyrano[2,3-d]pyrimidine as potential Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors’, Bioorg. Med. Chem. Lett. 2019, 29, 164-171.
B. Nickavar, N. Yousefian, ‘Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants’, J. Verbraucherschutz Lebensmittelsicherh. 2011, 6, 191-195.
R. Yousefi, M.-M. Alavian-Mehr, F. Mokhtari, F. Panahi, M. H. Mehraban, A. Khalafi-Nezhad, ‘Pyrimidine-fused heterocycle derivatives as a novel class of inhibitors for α-glucosidase’, J. Enzyme Inhib. Med. Chem. 2013, 28, 1228-1235.
F. K. Algethami, I. Saidi, H. N. Abdelhamid, M. R. Elamin, B. Y. Abdulkhair, A. Chrouda, H. Ben Jannet, ‘Trifluoromethylated Flavonoid-Based Isoxazoles as Antidiabetic and Anti-Obesity Agents: Synthesis, in vitro α-Amylase Inhibitory Activity, Molecular Docking and Structure-Activity Relationship Analysis’, Molecules 2021, 26, 5214.
M. Karami, A. Hasaninejad, H. Mahdavi, A. Iraji, S. Mojtabavi, M. A. Faramarzi, M. Mahdavi, ‘One-pot multi-component synthesis of novel chromeno[4,3-b]pyrrol-3-yl derivatives as α-glucosidase inhibitors’, Mol. Diversity 2022, 26, 2393-2405.
R. Mehmood, E. U. Mughal, E. B. Elkaeed, R. J. Obaid, Y. Nazir, H. A. Al-Ghulikah, N. Naeem, M. M. Al-Rooqi, S. A. Ahmed, S. W. A. Shah, A. Sadiq, ‘Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as α-Glucosidase Inhibitors: In vitro, in vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies’, ACS Omega 2022, 7, 30215-30232.
T. Mosmann, ‘Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays’, J. Immunol. Methods 1983, 65, 55-63.
R. U. Lemieux, in Methods Carbohydr. Chem., Vol. Volume 2 (Eds.: R. L. Whistler, M. L. Wolfrom, J. N. BeMiller), Academic Press, New York, 1963, pp. 222-223.
D. P. Temelkoff, M. Zeller, P. Norris, ‘N-Glycoside neoglycotrimers from 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide’, Carbohydr. Res. 2006, 341, 1081-1090.
S. N. Dupuis, A. W. Robertson, T. Veinot, S. M. A. Monro, S. E. Douglas, R. T. Syvitski, K. B. Goralski, S. A. McFarland, D. L. Jakeman, ‘Synthetic diversification of natural products: semi-synthesis and evaluation of triazole jadomycins’, Chem. Sci. 2012, 3, 1640-1644.
S. K. Boda, V. Pishka, P. V. A. Lakshmi, S. Chinde, P. Grover, ‘1,2,3-Triazole Tagged 3H-Pyrano[2,3-d]pyrimidine-6-carboxylate Derivatives: Synthesis, in vitro Cytotoxicity, Molecular Docking and DNA Interaction Studies’, Chem. Biodiversity 2018, 15, e18000101.
M. Taha, M. S. Baharudin, N. H. Ismail, S. Imran, M. N. Khan, F. Rahim, M. Selvaraj, S. Chigurupati, M. Nawaz, F. Qureshi, S. Vijayabalan, ‘Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives’, Bioorg. Chem. 2018, 80, 36-42.
M. Iftikhar Shahnawaz, M. Saleem, N. Riaz Aziz-ur-Rehman, I. Ahmed, J. Rahman, M. Ashraf, M. S. Sharif, S. U. Khan, T. T. Htar, ‘A novel five-step synthetic route to 1,3,4-oxadiazole derivatives with potent α-glucosidase inhibitory potential and their in silico studies’, Arch. Pharm. 2019, 352, 1900095.
GraphPad Software, Inc., San Diego, CA (USA), 2012.
L. K. Williams, X. Zhang, S. Caner, C. Tysoe, N. T. Nguyen, J. Wicki, D. E. Williams, J. Coleman, J. H. McNeill, V. Yuen, R. J. Andersen, S. G. Withers, G. D. Brayer, ‘The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif’, Nat. Chem. Biol. 2015, 11, 691-696.
L. Ren, X. Qin, X. Cao, L. Wang, F. Bai, G. Bai, Y. Shen, ‘Structural insight into substrate specificity of human intestinal maltase-glucoamylase’, Protein Cell 2011, 2, 827-836.
C. Lu, C. Wu, D. Ghoreishi, W. Chen, L. Wang, W. Damm, G. A. Ross, M. K. Dahlgren, E. Russell, C. D. Von Bargen, R. Abel, R. A. Friesner, E. D. Harder, ‘OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space’, J. Chem. Theory Comput. 2021, 17, 4291-4300.
W. Sherman, H. S. Beard, R. Farid, ‘Use of an Induced Fit Receptor Structure in Virtual Screening’, Chem. Biol. Drug Des. 2006, 67, 83-84.
M. P. Jacobson, D. L. Pincus, C. S. Rapp, T. J. F. Day, B. Honig, D. E. Shaw, R. A. Friesner, ‘A hierarchical approach to all-atom protein loop prediction’, Proteins 2004, 55, 351-367.
K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossváry, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, a. D. E. Shaw, in Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida (USA), 2006, November 11-17.
Schrödinger, Suite 2021-2, Schrödinger, Inc. (New York, USA), 2021.