Role of the Two Flagellar Stators in Swimming Motility of Pseudomonas putida.


Journal

mBio
ISSN: 2150-7511
Titre abrégé: mBio
Pays: United States
ID NLM: 101519231

Informations de publication

Date de publication:
20 12 2022
Historique:
pubmed: 22 11 2022
medline: 3 3 2023
entrez: 21 11 2022
Statut: ppublish

Résumé

In the soil bacterium Pseudomonas putida, the motor torque for flagellar rotation is generated by the two stators MotAB and MotCD. Here, we construct mutant strains in which one or both stators are knocked out and investigate their swimming motility in fluids of different viscosity and in heterogeneous structured environments (semisolid agar). Besides phase-contrast imaging of single-cell trajectories and spreading cultures, dual-color fluorescence microscopy allows us to quantify the role of the stators in enabling P. putida's three different swimming modes, where the flagellar bundle pushes, pulls, or wraps around the cell body. The MotAB stator is essential for swimming motility in liquids, while spreading in semisolid agar is not affected. Moreover, if the MotAB stator is knocked out, wrapped mode formation under low-viscosity conditions is strongly impaired and only partly restored for increased viscosity and in semisolid agar. In contrast, when the MotCD stator is missing, cells are indistinguishable from the wild type in fluid experiments but spread much more slowly in semisolid agar. Analysis of the microscopic trajectories reveals that the MotCD knockout strain forms sessile clusters, thereby reducing the number of motile cells, while the swimming speed is unaffected. Together, both stators ensure a robust wild type that swims efficiently under different environmental conditions.

Identifiants

pubmed: 36409076
doi: 10.1128/mbio.02182-22
pmc: PMC9765564
doi:

Substances chimiques

Bacterial Proteins 0
Agar 9002-18-0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0218222

Références

PLoS Pathog. 2020 Jul 2;16(7):e1008620
pubmed: 32614919
Mol Microbiol. 2009 Feb;71(4):836-50
pubmed: 19170881
Biophys J. 2016 Jan 5;110(1):247-57
pubmed: 26745427
Nat Microbiol. 2020 Dec;5(12):1553-1564
pubmed: 32929189
Sci Rep. 2017 Dec 1;7(1):16771
pubmed: 29196650
Methods Mol Biol. 2014;1149:59-65
pubmed: 24818897
Appl Environ Microbiol. 2021 Nov 10;87(23):e0167421
pubmed: 34524895
Environ Microbiol. 2022 Dec;24(12):5911-5923
pubmed: 35722744
Nat Commun. 2022 Sep 10;13(1):5327
pubmed: 36088344
Sci Adv. 2020 May 27;6(22):eaaz6153
pubmed: 32766440
J Bacteriol. 2019 Aug 22;201(18):
pubmed: 30642992
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15):
pubmed: 33876769
J Bacteriol. 2015 Feb;197(3):420-30
pubmed: 25349157
Nature. 1992 Jan 9;355(6356):182-4
pubmed: 1309599
mBio. 2013 Aug 20;4(4):
pubmed: 23963182
J Bacteriol. 2005 Jan;187(2):771-7
pubmed: 15629949
Proc Natl Acad Sci U S A. 1989 Sep;86(18):6973-7
pubmed: 2674941
Cell. 2020 Oct 1;183(1):244-257.e16
pubmed: 32931735
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2120508119
pubmed: 35349348
Nat Commun. 2019 May 6;10(1):2075
pubmed: 31061418
J Bacteriol. 2004 Oct;186(19):6341-50
pubmed: 15375113
ISME J. 2018 Mar;12(3):838-848
pubmed: 29269839
Nature. 2003 Jun 26;423(6943):938
pubmed: 12827190
Nat Commun. 2018 Dec 18;9(1):5369
pubmed: 30560868
Annu Rev Microbiol. 2022 Sep 8;76:349-367
pubmed: 35650667
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12952-12957
pubmed: 29183968
Curr Opin Microbiol. 2021 Jun;61:73-81
pubmed: 33845324
Nature. 2006 Sep 21;443(7109):355-8
pubmed: 16971952
J Bacteriol. 1989 Jul;171(7):4063-6
pubmed: 2738028
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6340-6345
pubmed: 28559324
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11839-44
pubmed: 23818629
Biophys J. 2013 Oct 15;105(8):1915-24
pubmed: 24138867
Sci Rep. 2022 Apr 20;12(1):6482
pubmed: 35444244
Soft Matter. 2019 Dec 11;15(48):9920-9930
pubmed: 31750508
Environ Microbiol. 2014 Jan;16(1):291-303
pubmed: 24148021
Cell Host Microbe. 2019 Jan 9;25(1):140-152.e6
pubmed: 30581112
Environ Microbiol. 2007 Jul;9(7):1842-50
pubmed: 17564617
Phys Biol. 2015 Apr 30;12(3):034001
pubmed: 25927668
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12846-9
pubmed: 20615986

Auteurs

Veronika Pfeifer (V)

Institute of Physics and Astronomy, University of Potsdamgrid.11348.3f, Potsdam, Germany.

Sönke Beier (S)

Institute of Physics and Astronomy, University of Potsdamgrid.11348.3f, Potsdam, Germany.

Zahra Alirezaeizanjani (Z)

Institute of Physics and Astronomy, University of Potsdamgrid.11348.3f, Potsdam, Germany.

Carsten Beta (C)

Institute of Physics and Astronomy, University of Potsdamgrid.11348.3f, Potsdam, Germany.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Animals Animal Migration Swimming Japan Seasons
Mycobacterium tuberculosis Animals Guinea Pigs Bacterial Proteins Toxin-Antitoxin Systems

Classifications MeSH