Exploring the underlying mechanisms of drug-induced impulse control disorders: a pharmacovigilance-pharmacodynamic study.

adverse reactions conduct disorders disruptive dopamine agonists drug-related side effects impulse control impulsive behavior psychopharmacology

Journal

Psychiatry and clinical neurosciences
ISSN: 1440-1819
Titre abrégé: Psychiatry Clin Neurosci
Pays: Australia
ID NLM: 9513551

Informations de publication

Date de publication:
Mar 2023
Historique:
revised: 07 11 2022
received: 26 07 2022
accepted: 18 11 2022
pubmed: 28 11 2022
medline: 4 3 2023
entrez: 27 11 2022
Statut: ppublish

Résumé

Impulse control disorders (e.g. pathological gambling, hypersexuality) may develop as adverse reactions to drugs. Pathogenetic hypotheses have mainly focused on D3-receptor agonism, and switching to alternatives with different pharmacologic mechanisms represents a common management strategy. Nonetheless, treatment failure is common and gaining pathophysiological insights is needed. We aimed to identify targets potentially contributing to pathologic impulsivity. We performed a pharmacovigilance-pharmacodynamic study on dopamine agonists and antipsychotics using the Food and Drug Administration Adverse Event Reporting System (January 2004-December 2021). We estimated disproportionate reporting using the Bayesian information component. Using online public databases (IUPHAR, ChEMBL, PDSP, DrugBank), we calculated drug occupancies. To identify the targets potentially contributing to impulsivity, we fitted univariate regression models interpolating information components and occupancies within dopamine agonists and antipsychotics. Sensitivity analyses were performed to check for the robustness of the results. Among 19 887 reports of impulsivity, 5898 recorded an antipsychotic, and 3100 a dopamine agonist. The more robust signals concerned aripiprazole (N = 3091; median information component [95% confidence interval] = 4.51[4.45-4.55]) and brexpiprazole (229; 4.00[3.78-4.16]) for antipsychotics, pergolide (105; 5.82[5.50-6.06]) and pramipexole (2009; 5.43[5.36-5.48]) for dopamine agonists. Robust, significant positive associations between drug occupancy and impulsivity reporting were found for D3 within dopamine agonists (beta = 1.52; P-value = 0.047) and 5-HT1a within antipsychotics (1.92, 0.029). Our results supported the role of D3-receptor agonism in inducing impulsivity in dopamine receptor agonists and identified a potential role of 5-HT1a receptor agonism in antipsychotics. Investigating these receptors may drive towards a better management of drug-induced impulsivity.

Identifiants

pubmed: 36436204
doi: 10.1111/pcn.13511
doi:

Substances chimiques

Dopamine Agonists 0
Antipsychotic Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

160-167

Informations de copyright

© 2022 The Authors. Psychiatry and Clinical Neurosciences © 2022 Japanese Society of Psychiatry and Neurology.

Références

Weintraub D. Impulse control disorders in Parkinson's disease: A 20-year odyssey. Mov. Disord. 2019; 34: 447-452.
Lopez AM, Weintraub D, Claassen DO. Impulse control disorders and related complications of Parkinson's disease therapy. Semin. Neurol. 2017; 37: 186-192.
Grall-Bronnec M, Victorri-Vigneau C, Donnio Y et al. Dopamine agonists and impulse control disorders: A complex association. Drug Saf. 2018; 41: 19-75.
Fusaroli M, Raschi E, Giunchi V et al. Impulse control disorders by dopamine partial agonists: A pharmacovigilance-pharmacodynamic assessment through the FDA adverse event reporting system. Int. J. Neuropsychopharmacol. 2022; 25: pyac031-pyac736.
Zazu L, Morera-Herreras T, Garcia M, Aguirre C, Unax L. Do cariprazine and brexpiprazole cause impulse control symptoms? A case/non-case study. Eur. Neuropsychopharmacol 2021; 50: 107-111.
Wolfschlag M, Håkansson A. Increased risk for developing gambling disorder under the treatment with pramipexole, ropinirole, and aripiprazole: A nationwide register study in Sweden. PLoS One. 2021; 16: e0252516.
De Wit LE, Wilting I, Souverein PC, van der Pol P, Egberts TCG. Impulse control disorders associated with dopaminergic drugs: A disproportionality analysis using vigibase. Eur. Neuropsychopharmacol. 2022; 58: 30-38.
Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011; 63: 182-217.
Soares-Cunha C, Coimbra B, Sousa N, Rodrigues AJ. Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci. Biobehav. Rev. 2016; 68: 370-386.
Tsai H-C, Zhang F, Adamantidis A et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 2009; 324: 1080-1084.
Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD. Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci. 2010; 30: 14273-14283.
Voon V, Fox SH. Medication-related impulse control and repetitive behaviors in Parkinson disease. Arch. Neurol. 2007; 64: 1089-1096.
Seeman P. Parkinson's disease treatment may cause impulse-control disorder via dopamine D3 receptors. Synapse 2015; 69: 183-189.
Corvol J-C, Artaud F, Cormier-Dequaire F et al. Longitudinal analysis of impulse control disorders in Parkinson disease. Neurology 2018; 91: e189-e201.
Dalley JW, Fryer TD, Brichard L et al. Nucleus Accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007; 315: 1267-1270.
Besson M, Belin D, McNamara R et al. Dissociable control of impulsivity in rats by dopamine D2/3 receptors in the Core and Shell subregions of the nucleus Accumbens. Neuropsychopharmacology 2010; 35: 560-569.
Martini A, Dal Lago D, Edelstyn NMJ, Salgarello M, Lugoboni F, Tamburin S. Dopaminergic neurotransmission in patients with Parkinson's disease and impulse control disorders: A systematic review and meta-analysis of PET and SPECT studies. Front. Neurol. 2018; 9: 1018.
Politis M, Loane C, Wu K et al. Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson's disease. Brain 2013; 136: 400-411.
Barbosa P, Hapuarachchi B, Djamshidian A et al. Reply to “impulse control disorders are associated with lower ventral striatum dopamine D3 receptor availability in Parkinson's disease: A [11C]-PHNO PET study.”. Parkinsonism Relat. Disord. 2021; 93: 31-32.
Pagano G, Molloy S, Bain PG et al. Impulse control disorders are associated with lower ventral striatum dopamine D3 receptor availability in Parkinson's disease: A [11C]-PHNO PET study. Parkinsonism Relat. Disord. 2021; 90: 52-56.
Yu XX, Fernandez HH. Dopamine agonist withdrawal syndrome: A comprehensive review. J. Neurol. Sci. 2017; 374: 53-55.
Bock R, Shin JH, Kaplan AR et al. Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci. 2013; 16: 632-638.
Browne CJ, Abela AR, Chu D et al. Dorsal raphe serotonin neurons inhibit operant responding for reward via inputs to the ventral tegmental area but not the nucleus accumbens: Evidence from studies combining optogenetic stimulation and serotonin reuptake inhibition. Neuropsychopharmacology 2019; 44: 793-804.
Miyazaki KW, Miyazaki K, Doya K. Activation of the central serotonergic system in response to delayed but not omitted rewards. Eur. J. Neurosci. 2011; 33: 153-160.
Polter AM, Kauer JA. Stress and VTA synapses: Implications for addiction and depression. Eur. J. Neurosci. 2014; 39: 1179-1188.
Carnovale C, Mazhar F, Arzenton E et al. Bullous pemphigoid induced by dipeptidyl peptidase-4 (DPP-4) inhibitors: A pharmacovigilance-pharmacodynamic/pharmacokinetic assessment through an analysis of the vigibase®. Expert Opin. Drug Saf. 2019; 18: 1099-1108.
Cepaityte D, Siafis S, Egberts T, Leucht S, Kouvelas D, Papazisis G. Exploring a safety signal of antipsychotic-associated pneumonia: A pharmacovigilance-pharmacodynamic study. Schizophr. Bull. 2021; 47: 672-681.
Çiray RO, Halaç E, Turan S, Tunçtürk M, Özbek M, Ermiş Ç. Selective serotonin reuptake inhibitors and manic switch: A pharmacovigilance and pharmacodynamical study. Asian J. Psychiatr. 2021; 66: 102891.
Cornet L, Khouri C, Roustit M et al. Pulmonary arterial hypertension associated with protein kinase inhibitors: A pharmacovigilance-pharmacodynamic study. Eur. Respir. J. 2019; 53: 1802472.
De Bruin ML, Pettersson M, Meyboom RHB, Hoes AW, Leufkens HGM. Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death. Eur. Heart J. 2005; 26: 590-597.
Lapeyre-Mestre M, Montastruc F. Interest of pharmacoepidemiology for pharmacodynamics and analysis of the mechanism of action of drugs. Therapie 2019; 74: 209-214.
Mahé J, de Campaigno EP, Chené A-L, Montastruc J-L, Despas F, Jolliet P. Pleural adverse drugs reactions and protein kinase inhibitors: Identification of suspicious targets by disproportionality analysis from VigiBase. Br. J. Clin. Pharmacol. 2018; 84: 2373-2383.
Mazhar F, Pozzi M, Gentili M et al. Association of Hyponatraemia and Antidepressant Drugs: A pharmacovigilance-pharmacodynamic assessment through an analysis of the US Food and Drug Administration adverse event reporting system (FAERS) database. CNS Drugs 2019; 33: 581-592.
Mazhar F, Battini V, Pozzi M et al. Hyponatremia following antipsychotic treatment: In silico pharmacodynamics analysis of spontaneous reports from the US Food and Drug Administration adverse event reporting system database and an updated systematic review. Int. J. Neuropsychopharmacol. 2021; 24: 477-489.
Montastruc F, Palmaro A, Bagheri H, Schmitt L, Montastruc J-L, Lapeyre-Mestre M. Role of serotonin 5-HT2C and histamine H1 receptors in antipsychotic-induced diabetes: A pharmacoepidemiological-pharmacodynamic study in VigiBase. Eur. Neuropsychopharmacol. 2015; 25: 1556-1565.
Montastruc J-L, Rousseau V, de Canecaude C, Roussin A, Montastruc F. Role of serotonin and norepinephrine transporters in antidepressant-induced arterial hypertension: A pharmacoepidemiological-pharmacodynamic study. Eur. J. Clin. Pharmacol. 2020; 76: 1321-1327.
Nguyen TTH, Pariente A, Montastruc J-L et al. An original pharmacoepidemiological-pharmacodynamic method: Application to antipsychotic-induced movement disorders. Br. J. Clin. Pharmacol. 2017; 83: 612-622.
Nguyen TTH, Roussin A, Rousseau V, Montastruc J-L, Montastruc F. Role of serotonin transporter in antidepressant-induced diabetes mellitus: A Pharmacoepidemiological-pharmacodynamic study in VigiBase®. Drug Saf. 2018; 41: 1087-1096.
Patras de Campaigno E, Bondon-Guitton E, Laurent G et al. Identification of cellular targets involved in cardiac failure caused by PKI in oncology: An approach combining pharmacovigilance and pharmacodynamics. Br. J. Clin. Pharmacol. 2017; 83: 1544-1555.
Siafis S, Papazisis G. Detecting a potential safety signal of antidepressants and type 2 diabetes: A pharmacovigilance-pharmacodynamic study. Br. J. Clin. Pharmacol. 2018; 84: 2405-2414.
Gaimari A, Fusaroli M, Raschi E et al. Amyotrophic lateral sclerosis as an adverse drug reaction: A disproportionality analysis of the Food and Drug Administration adverse event reporting system. Drug Saf. 2022; 45: 663-673.
Fusaroli M, Isgrò V, Cutroneo PM et al. Post-marketing surveillance of CAR-T-cell therapies: Analysis of the FDA adverse event reporting system (FAERS) database. Drug Saf. 2022; [Cited 2022 Jul 16] Available from; 45: 891-908.
Fusaroli M, Raschi E, Contin M et al. Impulsive conditions in Parkinson's disease: A pharmacosurveillance-supported list. Parkinsonism Relat. Disord. 2021; 90: 79-83.
Norén GN, Hopstadius J, Bate A. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery. Stat. Methods Med. Res. 2013; 22: 57-69.
Hiemke C, Bergemann N, Clement HW et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018; 51: 9-62.
Wishart DS, Feunang YD, Guo AC et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018; 46: D1074-D1082.
Mendez D, Gaulton A, Bento AP et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019; 47: D930-D940.
Besnard J, Ruda GF, Setola V et al. Automated design of ligands to polypharmacological profiles. Nature 2012; 492: 215-220.
American Psychiatric Association. DSM-IV impulse-control disorders not elsewhere classified. In: DSM-IV. Washington, DC: American Psychiatric Association, 2000. p. 663-677.
Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: Comparison with D2 receptor expressing neurons. Neuropsychopharmacology 1999; 20: 60-80.
Erga AH, Dalen I, Ushakova A et al. Dopaminergic and opioid pathways associated with impulse control disorders in Parkinson's disease. Front. Neurol. 2018; 9: 109. [Cited 2022 Jul 6] Available from. https://www.frontiersin.org/articles/10.3389/fneur.2018.00109.
Augustine A, Winstanley CA, Krishnan V. Impulse control disorders in Parkinson's disease: From bench to bedside. Front. Neurosci. 2021; 15: 654238. [Cited 2022 Jul 6] Available from. https://www.frontiersin.org/articles/10.3389/fnins.2021.654238.
Comings DE, Gade R, Wu S et al. Studies of the potential role of the dopamine D1 receptor gene in addictive behaviors. Mol. Psychiatry 1997; 2: 44-56.
Huang W, Ma JZ, Payne TJ, Beuten J, Dupont RT, Li MD. Significant association of DRD1 with nicotine dependence. Hum. Genet. 2008; 123: 133-140.
Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience 2010; 166: 1023-1035.
Liu Z, Lin R, Luo M. Reward contributions to serotonergic functions. Annu. Rev. Neurosci. 2020; 43: 141-162.
Hayes DJ, Greenshaw AJ. 5-HT receptors and reward-related behaviour: A review. Neurosci. Biobehav. Rev. 2011; 35: 1419-1449.
Chu J, Deyama S, Li X et al. Role of 5-HT1A receptor-mediated serotonergic transmission in the medial prefrontal cortex in acute restraint stress-induced augmentation of rewarding memory of cocaine in mice. Neurosci. Lett. 2021; 743: 135555.
Humby T, Smith GE, Small R et al. Effects of 5-HT2C, 5-HT1A receptor challenges and modafinil on the initiation and persistence of gambling behaviours. Psychopharmacology (Berl) 2020; 237: 1745-1756.
Lu C-L, Ku Y-C, Lo S-M et al. Acute and subchronic effects of buspirone on attention and impulsivity in the five-choice serial reaction time task in rats. Neurosci. Lett. 2013; 556: 210-215.
Liu YP, Wilkinson LS, Robbins TW. Effects of acute and chronic buspirone on impulsive choice and efflux of 5-HT and dopamine in hippocampus, nucleus accumbens and prefrontal cortex. Psychopharmacology (Berl) 2004; 173: 175-185.
Martis L-S, Højgaard K, Holmes MC, Elfving B, Wiborg O. Vortioxetine ameliorates anhedonic-like behaviour and promotes strategic cognitive performance in a rodent touchscreen task. Sci. Rep. 2021; 11: 9113.
Ohmura Y, Kumamoto H, Tsutsui-Kimura I et al. Tandospirone suppresses impulsive action by possible blockade of the 5-HT1A receptor. J. Pharmacol. Sci. 2013; 122: 84-92.
Benko A, Lazary J, Molnar E et al. Significant association between the C(−1019) G functional polymorphism of the HTR1A gene and impulsivity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010; 153B: 592-599.
Stamatis CA, Engelmann JB, Ziegler C, Domschke K, Hasler G, Timpano KR. A neuroeconomic investigation of 5-HTT/5-HT1A gene variation, social anxiety, and risk-taking behavior. Anxiety Stress Coping 2020; 33: 176-192.
Jhou TC. The rostromedial tegmental (RMTg) “brake” on dopamine and behavior: A decade of progress but also much unfinished work. Neuropharmacology 2021; 198: 108763.
Buie N, Sodha D, Scheinman SB, Steidl S. Rewarding effects of M4 but not M3 muscarinic cholinergic receptor antagonism in the rostromedial tegmental nucleus. Behav. Brain Res. 2020; 379: 112340.
Betts GD, Hynes TJ, Winstanley CA. Pharmacological evidence of a cholinergic contribution to elevated impulsivity and risky decision-making caused by adding win-paired cues to a rat gambling task. J. Psychopharmacol. 2021; 35: 701-712.
Klawonn AM, Wilhelms DB, Lindström SH et al. Muscarinic M4 receptors on cholinergic and dopamine D1 receptor-expressing neurons have opposing functionality for positive reinforcement and influence impulsivity. Front. Mol. Neurosci. 2018; 11: 139. [Cited 2022 May 15] Available from. https://www.frontiersin.org/article/10.3389/fnmol.2018.00139.
Anastasio NC, Stutz SJ, Fink LHL et al. Serotonin (5-HT) 5-HT2A receptor (5-HT2AR):5-HT2CR imbalance in medial prefrontal cortex associates with motor impulsivity. ACS Chem. Nerosci. 2015; 6: 1248-1258.
Bono F, Mutti V, Fiorentini C, Missale C. Dopamine D3 receptor heteromerization: Implications for neuroplasticity and neuroprotection. Biomolecules 2020; 10: 1016.
Wang LP, Li F, Wang D et al. NMDA receptors in dopaminergic neurons are crucial for habit learning. Neuron 2011; 72: 1055-1066.
Becker G, Bolbos R, Costes N, Redouté J, Newman-Tancredi A, Zimmer L. Selective serotonin 5-HT1A receptor biased agonists elicit distinct brain activation patterns: A pharmacoMRI study. Sci. Rep. 2016; 6: 26633.
Esteves M, Moreira PS, Sousa N, Leite-Almeida H. Assessing impulsivity in humans and rodents: Taking the translational road. Front. Behav. Neurosci. 2021; 15: 15.

Auteurs

Michele Fusaroli (M)

Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy.

Valentina Giunchi (V)

Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy.

Vera Battini (V)

Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy.

Michele Gringeri (M)

Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy.

Roberto Rimondini (R)

Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy.

Marco Menchetti (M)

Unit of Psychiatry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna.

Sonia Radice (S)

Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy.

Marco Pozzi (M)

Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy.

Maria Nobile (M)

Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy.

Emilio Clementi (E)

Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy.
Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy.

Fabrizio De Ponti (F)

Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy.

Carla Carnovale (C)

Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy.

Emanuel Raschi (E)

Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy.

Elisabetta Poluzzi (E)

Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH