Entropy and the arrow of time in population dynamics.

Entropy Epistasis Fundamental symmetries Moran process Time-irreversible processes

Journal

Bio Systems
ISSN: 1872-8324
Titre abrégé: Biosystems
Pays: Ireland
ID NLM: 0430773

Informations de publication

Date de publication:
Jan 2023
Historique:
received: 14 06 2022
revised: 20 10 2022
accepted: 21 11 2022
pubmed: 28 11 2022
medline: 11 1 2023
entrez: 27 11 2022
Statut: ppublish

Résumé

The concept of entropy in statistical physics is related to the existence of irreversible macroscopic processes. In this work, we explore a recently introduced entropy formula for a class of stochastic processes with more than one absorbing state that is extensively used in population genetics models. We will consider the Moran process as a paradigm for this class, and will extend our discussion to other models outside this class. We will also discuss the relation between non-extensive entropies in physics and epistasis (i.e., when the effects of different alleles are not independent) and the role of symmetries in population genetic models.

Identifiants

pubmed: 36436697
pii: S0303-2647(22)00198-8
doi: 10.1016/j.biosystems.2022.104817
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

104817

Informations de copyright

Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Diogo Costa-Cabanas (D)

Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal. Electronic address: dc.cabanas@campus.fct.unl.pt.

Fabio A C C Chalub (FACC)

Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal; Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal. Electronic address: facc@fct.unl.pt.

Max O Souza (MO)

Instituto de Matemática e Estatística, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis, S/N, Campus do Gragoatá, Niterói, RJ, 24210-201, Brazil. Electronic address: maxsouza@id.uff.br.

Articles similaires

Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics
Animals Finland Introduced Species Snow Foxes
Humans Acute Kidney Injury Female Male Retrospective Studies
Animals Birds Mammals Climate Change Population Dynamics

Classifications MeSH