Neuromonitoring in neonatal critical care part I: neonatal encephalopathy and neonates with possible seizures.
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
05
05
2022
accepted:
19
08
2022
revised:
12
08
2022
medline:
21
7
2023
pubmed:
9
12
2022
entrez:
8
12
2022
Statut:
ppublish
Résumé
The blooming of neonatal neurocritical care over the last decade reflects substantial advances in neuromonitoring and neuroprotection. The most commonly used brain monitoring tools in the neonatal intensive care unit (NICU) are amplitude integrated EEG (aEEG), full multichannel continuous EEG (cEEG), and near-infrared spectroscopy (NIRS). While some published guidelines address individual tools, there is no consensus on consistent, efficient, and beneficial use of these modalities in common NICU scenarios. This work reviews current evidence to assist decision making for best utilization of neuromonitoring modalities in neonates with encephalopathy or with possible seizures. Neuromonitoring approaches in extremely premature and critically ill neonates are discussed separately in the companion paper. IMPACT: Neuromonitoring techniques hold promise for improving neonatal care. For neonatal encephalopathy, aEEG can assist in screening for eligibility for therapeutic hypothermia, though should not be used to exclude otherwise eligible neonates. Continuous cEEG, aEEG and NIRS through rewarming can assist in prognostication. For neonates with possible seizures, cEEG is the gold standard for detection and diagnosis. If not available, aEEG as a screening tool is superior to clinical assessment alone. The use of seizure detection algorithms can help with timely seizures detection at the bedside.
Identifiants
pubmed: 36476747
doi: 10.1038/s41390-022-02393-1
pii: 10.1038/s41390-022-02393-1
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
64-73Subventions
Organisme : Department of Health
Pays : United Kingdom
Investigateurs
Sonia Bonifacio
(S)
Pia Wintermark
(P)
Hany Aly
(H)
Taeun Chang
(T)
Vann Chau
(V)
Hannah Glass
(H)
Monica Lemmon
(M)
An Massaro
(A)
Courtney Wusthoff
(C)
Gabrielle deVeber
(G)
Andrea Pardo
(A)
Melisa Carrasco McCaul
(MC)
Informations de copyright
© 2022. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
Références
Austin, T. The development of neonatal neurointensive care. Pediatr. Res. https://doi.org/10.1038/s41390-019-0729-5 (2019).
Glass, H. C., Ferriero, D. M., Rowitch, D. H. & Shimotake, T. K. The neurointensive nursery: concept, development, and insights gained. Curr. Opin. Pediatr. 31, 202–209 (2019).
pubmed: 30720542
Bonifacio, S. L. & Van Meurs, K. Neonatal neurocritical care: providing brain-focused care for all at risk neonates. Semin Pediatr. Neurol. 32, 100774 (2019).
pubmed: 31813520
Carrasco, M., Stafstrom, C. E., Tekes, A., Parkinson, C. & Northington, F. J. The Johns Hopkins Neurosciences Intensive Care Nursery Tenth Anniversary (2009-2019): a historical reflection and vision for the future. Child Neurol. open 7, 2329048x20907761 (2020).
pubmed: 32215280
pmcid: 7081468
Dreyfus-Brisac, C. The electroencephalogram of the premature infant and full term newborn:normal and abnormal development of waking and sleeping patterns (Grune and Stratton, 1964).
Clancy, R. R., Bergqvist, A. G. C. & Dlugos, D. J. In Current Practice of Clinical Electroencephalography (Ebersole, J. & Pedley, T. eds.) 160–234 (Lippincott Williams & Wilkins, 2003).
Connell, J. A., Oozeer, R. & Dubowitz, V. Continuous 4-channel EEG monitoring: a guide to interpretation, with normal values, in preterm infants. Neuropediatrics 18, 138–145 (1987).
pubmed: 3683751
Holmes, G. L. & Lombroso, C. T. Prognostic value of background patterns in the neonatal EEG. J. Clin. Neurophysiol. 10, 323–352 (1993).
pubmed: 8408599
Lamblin, M. D. et al. Electroencephalography of the premature and term newborn. Maturational aspects and glossary. Neurophysiol. Clin. 29, 123–219 (1999).
pubmed: 10367287
Mizrahi, E., Hrachovy R & Kellaway, P. Atlas of neonatal electroencephalography 3rd edn (Lippincott Williams & Wilkins, 2004).
Fogtmann, E. P., Plomgaard, A. M., Greisen, G. & Gluud, C. Prognostic accuracy of electroencephalograms in preterm infants: a systematic review. Pediatrics 139, e20161951 (2017).
Shellhaas, R. A. et al. The American clinical neurophysiology society’s guideline on continuous electroencephalography monitoring in neonates. J. Clin. Neurophysiol. 28, 611–617 (2011).
pubmed: 22146359
Tsuchida, T. N. et al. American Clinical Neurophysiology Society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society Critical Care Monitoring Committee. J. Clin. Neurophysiol. 30, 161–173 (2013).
pubmed: 23545767
El-Dib, M., Chang, T., Tsuchida, T. N. & Clancy, R. R. Amplitude-integrated electroencephalography in neonates. Pediatr. Neurol. 41, 315–326 (2009).
pubmed: 19818932
Shah, N. A. & Wusthoff, C. J. How to use: amplitude-integrated EEG (aEEG). Arch. Dis. Child. Educ. Pract. Ed. 100, 75–81 (2015).
pubmed: 25035312
Hellstrom-Westas, L., Rosen, I., de Vries, L. S. & Greisen, G. Amplitude-integrated EEG classification and interpretation in preterm and term infants. Neoreviews 7, e76–e87 (2006).
Burdjalov, V. F., Baumgart, S. & Spitzer, A. R. Cerebral function monitoring: a new scoring system for the evaluation of brain maturation in neonates. Pediatrics 112, 855–861 (2003).
pubmed: 14523177
Pellicer, A. & Bravo, M. D. C. Near-infrared spectroscopy: a methodology-focused review. Semin. Fetal Neonatal Med. 16, 42–49 (2011).
pubmed: 20580625
Naulaers, G. et al. Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. Neonatology 92, 120–126 (2007).
pubmed: 17377413
El-Dib, M. & Soul, J. S. Monitoring and management of brain hemodynamics and oxygenation. Handb. Clin. Neurol. 162, 295–314 (2019).
pubmed: 31324316
Volpe, J. J. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann. Neurol. 72, 156–166 (2012).
pubmed: 22926849
Executive summary: neonatal encephalopathy and neurologic outcome, second edition. report of the American College of Obstetricians and Gynecologists’ task force on neonatal encephalopathy. Obstet. Gynecol. 123, 896–901 (2014).
Chalak, L., Ferriero, D. M., Gressens, P., Molloy, E. & Bearer, C. A 20 years conundrum of neonatal encephalopathy and hypoxic ischemic encephalopathy: are we closer to a consensus guideline? Pediatr. Res. 86, 548–549 (2019).
pubmed: 31450231
Kurinczuk, J. J., White-Koning, M. & Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 86, 329–338 (2010).
pubmed: 20554402
Liu, L. et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals. Lancet 388, 3027–3035 (2016).
pubmed: 27839855
pmcid: 5161777
Hellstrom-Westas, L., Rosen, I. & Svenningsen, N. W. Predictive value of early continuous amplitude integrated eeg recordings on outcome after severe birth asphyxia in full term infants. Arch. Dis. Child Fetal Neonatal Ed. 72, F34–F38 (1995).
pubmed: 7743282
pmcid: 2528413
Toet, M. C., Hellstrom-Westas, L., Groenendaal, F., Eken, P. & de Vries, L. S. Amplitude integrated EEG 3 and 6 h after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch. Dis. Child Fetal Neonatal Ed. 81, F19–F23 (1999).
pubmed: 10375357
pmcid: 1720950
Naqeeb, N., Edwards, A. D., Cowan, F. M. & Azzopardi, D. Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics 103, 1263–1271 (1999). al.
pubmed: 10353940
ter Horst, H. J. et al. Prognostic significance of amplitude-integrated EEG during the first 72 h after birth in severely asphyxiated neonates. Pediatr. Res. 55, 1026–1033 (2004).
pubmed: 15155870
Shalak, L. F., Laptook, A. R., Velaphi, S. C. & Perlman, J. M. Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathy. Pediatrics 111, 351–357 (2003).
pubmed: 12563063
Del Río, R. et al. Amplitude integrated electroencephalogram as a prognostic tool in neonates with hypoxic-ischemic encephalopathy: a systematic review. PLoS One 11, e0165744 (2016).
pubmed: 27802300
pmcid: 5089691
van Rooij, L. G. et al. Recovery of amplitude integrated electroencephalographic background patterns within 24 h of perinatal asphyxia. Arch. Dis. Child Fetal Neonatal Ed. 90, F245–F251 (2005).
pubmed: 15846017
pmcid: 1721875
Osredkar, D. et al. Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics 115, 327–332 (2005).
pubmed: 15687440
Azzopardi, D. V. et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med 361, 1349–1358 (2009).
pubmed: 19797281
Gluckman, P. D. et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365, 663–670 (2005).
pubmed: 15721471
Sarkar, S., Barks, J. D. & Donn, S. M. Should amplitude-integrated electroencephalography be used to identify infants suitable for hypothermic neuroprotection? J. Perinatol. 28, 117–122 (2008).
pubmed: 18004390
Chandrasekaran, M., Chaban, B., Montaldo, P. & Thayyil, S. Predictive value of amplitude-integrated EEG (aEEG) after rescue hypothermic neuroprotection for hypoxic ischemic encephalopathy: a meta-analysis. J. Perinatol. 37, 684–689 (2017).
pubmed: 28252661
Hallberg, B., Grossmann, K., Bartocci, M. & Blennow, M. The prognostic value of early aEEG in asphyxiated infants undergoing systemic hypothermia treatment. Acta Paediatr. 99, 531–536 (2010).
pubmed: 20050830
Massaro, A. N. et al. Aeeg evolution during therapeutic hypothermia and prediction of nicu outcome in encephalopathic neonates. Neonatology 102, 197–202 (2012).
pubmed: 22796967
Thoresen, M., Hellström-Westas, L., Liu, X. & De Vries, L. S. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 126, e131–e139 (2010).
pubmed: 20566612
Gunn, A. J. & Thoresen, M. Neonatal encephalopathy and hypoxic-ischemic encephalopathy. Handb. Clin. Neurol. 162, 217–237 (2019).
pubmed: 31324312
Filan, P. et al. The relationship between the onset of electrographic seizure activity after birth and the time of cerebral injury in utero. BJOG Int. J. Obstet. Gynaecol. 112, 504–507 (2005).
Obeid, R. et al. The correlation between a short-term conventional electroencephalography in the first day of life and brain magnetic resonance imaging in newborns undergoing hypothermia for hypoxic-ischemic encephalopathy. Pediatr. Neurol. 67, 91–97 (2017).
pubmed: 28089767
Liu, W. et al. Prognostic value of clinical tests in neonates with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia: a systematic review and meta-analysis. Front Neurol. 11, 133 (2020).
pubmed: 32161566
pmcid: 7052385
Murray, D. M., Boylan, G. B., Ryan, C. A. & Connolly, S. Early EEG findings in hypoxic-ischemic encephalopathy predict outcomes at 2 years. Pediatrics 124, e459–e467 (2009).
pubmed: 19706569
Nash, K. B. et al. Video-EEG monitoring in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neurology 76, 556–562 (2011).
pubmed: 21300971
pmcid: 3053178
Wusthoff, C. J. et al. Interrater agreement in the interpretation of neonatal electroencephalography in hypoxic-ischemic encephalopathy. Epilepsia 58, 429–435 (2017).
pubmed: 28166364
pmcid: 5339031
Massey, S. L. et al. Interrater and intrarater agreement in neonatal electroencephalogram background scoring. J. Clin. Neurophysiol. 36, 1–8 (2019).
pubmed: 30383719
pmcid: 6322680
Awal, M. A., Lai, M. M., Azemi, G., Boashash, B. & Colditz, P. B. EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: a structured review. Clin. Neurophysiol. 127, 285–296 (2016).
pubmed: 26105684
Korotchikova, I. et al. EEG in the healthy term newborn within 12 h of birth. Clin. Neurophysiol. 120, 1046–1053 (2009).
pubmed: 19427811
Kharoshankaya, L. et al. Seizure burden and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Dev. Med. Child Neurol. 58, 1242–1248 (2016).
pubmed: 27595841
pmcid: 5214689
Fitzgerald, M. P., Massey, S. L., Fung, F. W., Kessler, S. K. & Abend, N. S. High electroencephalographic seizure exposure is associated with unfavorable outcomes in neonates with hypoxic-ischemic encephalopathy. Seizure 61, 221–226 (2018).
pubmed: 30227341
pmcid: 6168337
Weeke, L. C. et al. Role of EEG background activity, seizure burden and MRI in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischaemic encephalopathy in the era of therapeutic hypothermia. Eur. J. Paediatr. Neurol. 20, 855–864 (2016).
pubmed: 27370316
Glass, H. C. et al. Risk factors for EEG seizures in neonates treated with hypothermia: a multicenter cohort study. Neurology 82, 1239–1244 (2014).
pubmed: 24610326
pmcid: 4001204
Worden, L. T. et al. The probability of seizures during continuous EEG monitoring in high-risk neonates. Epilepsia 60, 2508–2518 (2019).
pubmed: 31745988
pmcid: 7083278
Lynch, N. E. et al. The temporal characteristics of seizures in neonatal hypoxic ischemic encephalopathy treated with hypothermia. Seizure 33, 60–65 (2015).
pubmed: 26571073
Cornet, M. C. et al. Predictive value of early EEG for seizures in neonates with hypoxic-ischemic encephalopathy undergoing therapeutic hypothermia. Pediatr. Res. 84, 399–402 (2018).
pubmed: 29895836
Peng, S. et al. Does near-infrared spectroscopy identify asphyxiated newborns at risk of developing brain injury during hypothermia treatment? Am. J. Perinatol. 32, 555–564 (2015).
pubmed: 25594221
Thoresen, M. Cooling the newborn after asphyxia - physiological and experimental background and its clinical use. Semin Neonatol. 5, 61–73 (2000).
pubmed: 10802751
Lemmers, P. M. A. et al. Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr. Res. 74, 180–185 (2013).
pubmed: 23728382
Rugytė, D. & Strumylaitė, L. Potential relationship between cerebral fractional tissue oxygen extraction (FTOE) and the use of sedative agents during the perioperative period in neonates and infants. Children 7, 209 (2020).
Szakmar, E. et al. Association between cerebral oxygen saturation and brain injury in neonates receiving therapeutic hypothermia for neonatal encephalopathy. J. Perinatol., 41, 269–277 (2021).
Goeral, K. et al. Prediction of outcome in neonates with hypoxic-ischemic encephalopathy ii: role of amplitude-integrated electroencephalography and cerebral oxygen saturation measured by near-infrared spectroscopy. Neonatology 112, 193–202 (2017).
pubmed: 28704822
Mitra, S. et al. Relationship between cerebral oxygenation and metabolism during rewarming in newborn infants after therapeutic hypothermia following hypoxic-ischemic brain injury. Adv. Exp. Med Biol. 923, 245–251 (2016).
pubmed: 27526150
pmcid: 6126425
Archer, L. N., Levene, M. I. & Evans, D. H. Cerebral artery doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet 2, 1116–1118 (1986).
pubmed: 2877270
Pryds, O., Greisen, G., Lou, H. & Friis-Hansen, B. Vasoparalysis associated with brain damage in asphyxiated term infants. J. Pediatr. 117, 119–125 (1990).
pubmed: 2115079
Variane, G. F. T., Chock, V. Y., Netto, A., Pietrobom, R. F. R. & Van Meurs, K. P. Simultaneous near-infrared spectroscopy (Nirs) and amplitude-integrated electroencephalography (aEEG): dual use of brain monitoring techniques improves our understanding of physiology. Front. Pediatrics 7, 560 (2019).
Arriaga-Redondo, M. et al. Lack of variability in cerebral oximetry tendency in infants with severe hypoxic-ischemic encephalopathy under hypothermia. Therapeutic Hypothermia Temp. Manag. 9, 243–250 (2019).
Niezen, C. K., Bos, A. F., Sival, D. A., Meiners, L. C. & Ter Horst, H. J. Amplitude-integrated EEG and cerebral near-infrared spectroscopy in cooled, asphyxiated infants. Am. J. Perinatol. 35, 904–910 (2018).
pubmed: 29421831
Pressler, R. M. et al. The ILAE classification of seizures and the epilepsies: modification for seizures in the neonate. position paper by the ilae task force on neonatal seizures. Epilepsia 62, 615–628 (2021).
pubmed: 33522601
Wusthoff, C. J. et al. Seizure control in neonates undergoing screening vs confirmatory EEG monitoring. Neurology 97, e587–e596 (2021).
pubmed: 34078719
pmcid: 8424499
Harris, M. L. et al. Standardized treatment of neonatal status epilepticus improves outcome. J. Child Neurol. 31, 1546–1554 (2016).
pubmed: 27581850
Wietstock, S. O., Bonifacio, S. L., McCulloch, C. E., Kuzniewicz, M. W. & Glass, H. C. Neonatal neurocritical care service is associated with decreased administration of seizure medication. J. Child Neurol. 30, 1135–1141 (2015).
pubmed: 25380602
Bashir, R. A. et al. Implementation of a neurocritical care program: improved seizure detection and decreased antiseizure medication at discharge in neonates with hypoxic-ischemic encephalopathy. Pediatr. Neurol. 64, 38–43 (2016).
pubmed: 27647155
Glass, H. C., Numis, A. L., Gano, D., Bali, V. & Rogers, E. E. Outcomes after acute symptomatic seizures in children admitted to a neonatal neurocritical care service. Pediatr. Neurol. 84, 39–45 (2018).
pubmed: 29886041
Pellegrin, S. et al. Neonatal seizures: case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 37, 7596–7609 (2019).
pubmed: 31783981
pmcid: 6899436
Nunes, M. L. et al. Neonatal seizures: is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia open 4, 10–29 (2019).
pubmed: 30868112
pmcid: 6398099
Cornet, M. C. et al. Neonatal presentation of genetic epilepsies: early differentiation from acute provoked seizures. Epilepsia 62, 1907–1920 (2021).
pubmed: 34153113
Shellhaas, R. A., Soaita, A. I. & Clancy, R. R. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics 120, 770–777 (2007).
pubmed: 17908764
Zhang, L., Zhou, Y. X., Chang, L. W. & Luo, X. P. Diagnostic value of amplitude-integrated electroencephalogram in neonatal seizures. Neurosci. Bull. 27, 251–257 (2011).
pubmed: 21788996
pmcid: 5560306
Shellhaas, R. A. & Clancy, R. R. Characterization of neonatal seizures by conventional EEG and single-channel EEG. Clin. Neurophysiol. 118, 2156–2161 (2007).
pubmed: 17765607
Shah, D. K. et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics 121, 1146–1154 (2008).
pubmed: 18519484
Vilan, A. et al. A distinctive ictal amplitude-integrated electroencephalography pattern in newborns with neonatal epilepsy associated with Kcnq2 mutations. Neonatology 112, 387–393 (2017).
pubmed: 28926830
Toet, M. C., van der Meij, W., de Vries, L. S., Uiterwaal, C. S. & van Huffelen, K. C. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 109, 772–779 (2002).
pubmed: 11986435
Rennie, J. M. et al. Non-expert use of the cerebral function monitor for neonatal seizure detection. Arch. Dis. Child Fetal Neonatal Ed. 89, F37–F40 (2004).
pubmed: 14711852
pmcid: 1721641
Stevenson, N. J., Lauronen, L. & Vanhatalo, S. The effect of reducing EEG electrode number on the visual interpretation of the human expert for neonatal seizure detection. Clin. Neurophysiol. 129, 265–270 (2018).
pubmed: 29223823
Sandoval Karamian, A. G. & Wusthoff, C. J. How helpful is aEEG? Context and user experience matter. Am. J. Perinatol. 39, 1132–1137 (2022).
Van Rooij, L. G. M. et al. Effect of treatment of subclinical neonatal seizures detected with AEEG: randomized, controlled trial. Pediatrics 125, e358–e366 (2010).
pubmed: 20100767
Srinivasakumar, P. et al. Treating EEG seizures in hypoxic ischemic encephalopathy: a randomized controlled trial. Pediatrics 136, e1302–e1309 (2015).
pubmed: 26482675
Hunt, R. W. et al. Effect of treatment of clinical seizures vs electrographic seizures in full-term and near-term neonates: a randomized clinical trial. JAMA Netw. open 4, e2139604 (2021).
pubmed: 34919132
pmcid: 8683963
Vanhatalo, S. et al. Why monitor the neonatal brain-that is the important question. Pediatr. Res. https://doi.org/10.1038/s41390-022-02040-9 (2022).
Soul, J. S. et al. Continuous EEG monitoring still recommended for neonatal seizure management: commentary on NEST trial. Pediatr. Res. https://doi.org/10.1038/s41390-022-02138-0 (2022).
Laroia, N., Guillet, R., Burchfiel, J. & McBride, M. C. EEG background as predictor of electrographic seizures in high-risk neonates. Epilepsia 39, 545–551 (1998).
pubmed: 9596208
Helmers, S. L. et al. Perioperative electroencephalographic seizures in infants undergoing repair of complex congenital cardiac defects. Electroencephalogr. Clin. Neurophysiol. 102, 27–36 (1997).
pubmed: 9060852
Bye, A. M. E. & Flanagan, D. Spatial and temporal characteristics of neonatal seizures. Epilepsia 36, 1009–1016 (1995).
pubmed: 7555951
Boylan, G. B. et al. Phenobarbitone, neonatal seizures, and video-EEG. Arch. Dis. Child Fetal Neonatal Ed. 86, F165–F170 (2002).
pubmed: 11978746
pmcid: 1721395
Scher, M. S., Alvin, J., Gaus, L., Minnigh, B. & Painter, M. J. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr. Neurol. 28, 277–280 (2003).
pubmed: 12849880
Wusthoff, C. J. et al. Electrographic seizures during therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. J. Child Neurol. 26, 724–728 (2011).
pubmed: 21447810
pmcid: 3102150
Sansevere, A. J. et al. Seizure prediction models in the neonatal intensive care unit. J. Clin. Neurophysiol. 36, 186–194 (2019).
pubmed: 30882530
pmcid: 6565438
Naim, M. Y. et al. Subclinical seizures identified by postoperative electroencephalographic monitoring are common after neonatal cardiac surgery. J. Thorac. Cardiovasc. Surg. 150, 169–180 (2015).
pubmed: 25957454
pmcid: 4936910
Levy, R. J. et al. Evaluation of seizure risk in infants after cardiopulmonary bypass in the absence of deep hypothermic cardiac arrest. Neurocrit Care 36, 30–38 (2022).
Sands, T. T. et al. Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia 57, 2019–2030 (2016).
pubmed: 27888506
Shellhaas, R. A. et al. Profile of neonatal epilepsies: characteristics of a prospective US cohort. Neurology 89, 893–899 (2017).
pubmed: 28733343
pmcid: 5577964
Painter, M. J. et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N. Engl. J. Med 341, 485–489 (1999).
pubmed: 10441604
Sharpe, C. et al. Levetiracetam Versus phenobarbital for neonatal seizures: a randomized controlled trial. Pediatrics 145, e20193182 (2020).
Boylan, G. B., Burgoyne, L., Moore, C., O’Flaherty, B. & Rennie, J. M. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatrica 99, 1150–1155 (2010).
pubmed: 20353503
Apers, W. M. J., de Vries, L. S., Groenendaal, F., Toet, M. C. & Weeke, L. C. Delay in treatment of neonatal seizures: a retrospective cohort study. Neonatology 117, 599–605 (2020).
Isaev, D. Y. et al. Attention-based network for weak labels in neonatal seizure detection. Proc. Mach. Learn Res 126, 479–507 (2020).
pubmed: 32995751
pmcid: 7521836
O’Shea, A., Lightbody, G., Boylan, G. & Temko, A. Neonatal seizure detection from raw multi-channel EEG using a fully convolutional architecture. Neural Netw. 123, 12–25 (2020).
pubmed: 31821947
Striano, P. & Minetti, C. Deep learning for neonatal seizure detection: a friend rather than foe. Lancet Child Adolesc. Health 4, 711–712 (2020).
pubmed: 32861270
Ansari, A. H. et al. Neonatal seizure detection using deep convolutional neural networks. Int J. Neural Syst. 29, 1850011 (2019).
pubmed: 29747532
Stevenson, N., Tapani, K. & Vanhatalo, S. Hybrid neonatal EEG seizure detection algorithms achieve the benchmark of visual interpretation of the human expert. Annu Int Conf. IEEE Eng. Med Biol. Soc. 2019, 5991–5994 (2019).
pubmed: 31947212
Pavel, A. M. et al. A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. Lancet Child Adolesc. Health 4, 740–749 (2020).
pubmed: 32861271
pmcid: 7492960
Pisani, F. & Spagnoli, C. Outcome in preterm infants with seizures. Handb. Clin. Neurol. 162, 401–414 (2019).
pubmed: 31324322
Glass, H. C. et al. Seizures in preterm neonates: a multicenter observational cohort study. J. Pediatr. 72, 19–24 (2017).
Ronen, G. M., Penney, S. & Andrews, W. The epidemiology of clinical neonatal seizures in newfoundland: a population-based study. J. Pediatrics 134, 71–75 (1999).
Lanska, M. J. & Lanska, D. J. Neonatal seizures in the United States: results of the national hospital discharge survey, 1980-1991. Neuroepidemiology 15, 117–125 (1996).
pubmed: 8700303
Lanska, M. J., Lanska, D. J., Baumann, R. J. & Kryscio, R. J. A population-based study of neonatal seizures in Fayette County, Kentucky. Neurology 45, 724–732 (1995).
pubmed: 7723962
Shah, D. K., Zempel, J., Barton, T., Lukas, K. & Inder, T. E. Electrographic seizures in preterm infants during the first week of life are associated with cerebral injury. Pediatr. Res. 67, 102–106 (2010).
pubmed: 19745782
Vesoulis, Z. A. et al. Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatr. Res. 75, 564–569 (2013).
pubmed: 24366515
pmcid: 3961524
Wikström, S. et al. Early single-channel AEEG/EEG predicts outcome in very preterm infants. Acta Paediatrica, Int. J. Paediatrics 101, 719–726 (2012).
Okumura, A. et al. Ictal electroencephalographic findings of neonatal seizures in preterm infants. Brain Dev. 30, 261–268 (2008).
pubmed: 17920220
Le Bihannic, A., Beauvais, K., Busnel, A., de Barace, C. & Furby, A. Prognostic value of EEG in very premature newborns. Arch. Dis. Child. Fetal Neonatal Ed. 97, F106–F109 (2012).
pubmed: 21659622
Pisani, F. et al. Mortality risk after neonatal seizures in very preterm newborns. J. Child Neurol. 27, 1264–1269 (2012).
pubmed: 22378670
Scher, M. S. et al. Electrographic seizures in preterm and full-term neonates: clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics 91, 128–134 (1993).
pubmed: 8416475
Lloyd, R. O., O’Toole, J. M., Pavlidis, E., Filan, P. M. & Boylan, G. B. Electrographic seizures during the early postnatal period in preterm infants. J. Pediatr. 187, 18–25.e12 (2017).
pubmed: 28366355
Pisani, F., Barilli, A. L., Sisti, L., Bevilacqua, G. & Seri, S. Preterm infants with video-EEG confirmed seizures: outcome at 30 months of age. Brain Dev. 30, 20–30 (2008).
pubmed: 17964748
Janáčková, S. et al. Electroencephalographic characteristics of epileptic seizures in preterm neonates. Clin. Neurophysiol. 127, 2721–2727 (2016).
pubmed: 27417043
Weeke, L. C. et al. Rhythmic EEG patterns in extremely preterm infants: classification and association with brain injury and outcome. Clin. Neurophysiol. 128, 2428–2435 (2017).
pubmed: 29096216
pmcid: 5700118
Pavlidis, E., Lloyd, R. O. & Boylan, G. B. EEG - a valuable biomarker of brain injury in preterm infants. Dev. Neurosci. 39, 23–35 (2017).
Wallois, F., Patil, A., Kongolo, G., Goudjil, S. & Grebe, R. Haemodynamic changes during seizure-like activity in a neonate: a simultaneous AC EEG-SPIR and high-resolution DC EEG recording. Neurophysiol. Clin. 39, 217–227 (2009).
pubmed: 19853793
Giorni, C. et al. The usefulness of near-infrared spectroscopy for detecting and monitoring status epilepticus after pediatric cardiac surgery. J. Cardiothorac. Vasc. Anesth. 23, 668–671 (2009).
pubmed: 19217803
Arca Diaz, G., Cesaron, E., Alfonso, I., Dunoyer, C. & Yaylali, I. Near infrared spectroscopy in the management of status epilepticus in a young infant. Eur. J. Paediatr. Neurol. 10, 19–21 (2006).
pubmed: 16529960
Silas, R., Sehgal, A., Walker, A. M. & Wong, F. Y. Cerebral oxygenation during subclinical seizures in neonatal hypoxic-ischaemic encephalopathy. Eur. J. Paediatr. Neurol. 16, 304–307 (2012).
pubmed: 21978628
Sokoloff, M. D., Plegue, M. A., Chervin, R. D., Barks, J. D. & Shellhaas, R. A. Phenobarbital and neonatal seizures affect cerebral oxygen metabolism: a near-infrared spectroscopy study. Pediatr. Res 78, 91–96 (2015).
pubmed: 25812123
pmcid: 4472490