Transcriptomic analyses reveal neuronal specificity of Leigh syndrome associated genes.


Journal

Journal of inherited metabolic disease
ISSN: 1573-2665
Titre abrégé: J Inherit Metab Dis
Pays: United States
ID NLM: 7910918

Informations de publication

Date de publication:
03 2023
Historique:
revised: 09 11 2022
received: 15 08 2022
accepted: 07 12 2022
pubmed: 12 12 2022
medline: 15 3 2023
entrez: 11 12 2022
Statut: ppublish

Résumé

Leigh syndrome is a rare, inherited, complex neurometabolic disorder with genetic and clinical heterogeneity. Features present in affected patients range from classical stepwise developmental regression to ataxia, seizures, tremor, and occasionally psychiatric manifestations. Currently, more than 100 monogenic causes of Leigh syndrome have been identified, yet the pathophysiology remains unknown. Here, we sought to determine the cellular specificity within the brain of all genes currently associated with Leigh syndrome. Further, we aimed to investigate potential genetic commonalities between Leigh syndrome and other disorders with overlapping clinical features. Enrichment of our target genes within the brain was evaluated with co-expression (CoExp) network analyses constructed using existing UK Brain Expression Consortium data. To determine the cellular specificity of the Leigh associated genes, we employed expression weighted cell type enrichment (EWCE) analysis of single-cell RNA-Seq data. Finally, CoExp network modules demonstrating enrichment of Leigh syndrome associated genes were then utilised for synaptic gene ontology analysis and heritability analysis. CoExp network analyses revealed that Leigh syndrome associated genes exhibit the highest levels of expression in brain regions most affected on MRI in affected patients. EWCE revealed significant enrichment of target genes in hippocampal and somatosensory pyramidal neurons and interneurons of the brain. Analysis of CoExp modules enriched with our target genes revealed preferential association with pre-synaptic structures. Heritability studies suggested some common enrichment between Leigh syndrome and Parkinson disease and epilepsy. Our findings suggest a primary mitochondrial dysfunction as the underlying basis of Leigh syndrome, with associated genes primarily expressed in neuronal cells.

Identifiants

pubmed: 36502462
doi: 10.1002/jimd.12578
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

243-260

Subventions

Organisme : Department of Health
Pays : United Kingdom

Informations de copyright

© 2022 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.

Références

Rahman S, Blok RB, Dahl HHM, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996;39(3):343-351. doi:10.1002/ANA.410390311
Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol. 2001;49(3):377-383. doi:10.1002/ana.75
Sofou K, De Coo IFM, Isohanni P, et al. A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet J Rare Dis. 2014;9(1):52. doi:10.1186/1750-1172-9-52
Alves CAPF, Teixeira SR, Martin-Saavedra JS, et al. Pediatric Leigh syndrome: neuroimaging features and genetic correlations. Ann Neurol. 2020;88(2):218-232. doi:10.1002/ana.25789
Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann Neurol. 2016;79(2):190-203. doi:10.1002/ana.24551
Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet. 2018;391(10139):2560-2574. doi:10.1016/S0140-6736(18)30727-X
García-Ruiz S, Gil-Martínez AL, Cisterna A, et al. CoExp: a web tool for the exploitation of co-expression networks. Front Genet. 2021;12:630187. doi:10.3389/FGENE.2021.630187
Trabzuni D, Ryten M, Walker R, et al. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J Neurochem. 2011;119(2):275-282. doi:10.1111/j.1471-4159.2011.07432.x
Mencacci NE, Reynolds R, Ruiz SG, et al. Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders. Brain. 2020;143(9):2771-2787. doi:10.1093/BRAIN/AWAA217
Skene NG, Grant SGN. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Front Neurosci. 2016;10:16. doi:10.3389/FNINS.2016.00016/BIBTEX
Zeisel A, M͡oz-Manchado AB, Codeluppi S, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138-1142. doi:10.1126/SCIENCE.AAA1934
Skene NG, Bryois J, Bakken TE, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50(6):825-833. doi:10.1038/S41588-018-0129-5
Koopmans F, van Nierop P, Andres-Alonso M, et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron. 2019;103(2):217-234.e4. doi:10.1016/j.neuron.2019.05.002
Ferrari R, Kia DA, Tomkins JE, et al. Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis. BMC Genomics. 2018;19(1):452. doi:10.1186/s12864-018-4804-9
Wang J, Lin ZJ, Liu L, et al. Epilepsy-associated genes. Seizure. 2017;44:11-20. doi:10.1016/j.seizure.2016.11.030
Farrell MS, Werge T, Sklar P, et al. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry. 2015;20(5):555-562. doi:10.1038/mp.2015.16
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605-D612. doi:10.1093/nar/gkaa1074
Cavanagh JB, Harding BN. Pathogenic factors underlying the lesions in Leigh's disease. Tissue responses to cellular energy deprivation and their clinico-pathological consequences. Brain. 1994;117(6):1357-1376. doi:10.1093/BRAIN/117.6.1357
Leigh D. Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry. 1951;14(3):216-221. doi:10.1136/JNNP.14.3.216
Soltesz I, Losonczy A. CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nat Neurosci. 2018;21(4):484-493. doi:10.1038/s41593-018-0118-0
Kann O, Huchzermeyer C, Kovács R, Wirtz S, Schuelke M. Gamma oscillations in the hippocampus require high complex i gene expression and strong functional performance of mitochondria. Brain. 2011;134(2):345-358. doi:10.1093/brain/awq333
Colgin LL, Moser EI. Gamma oscillations in the hippocampus. Phys Ther. 2010;25(5):319-329. doi:10.1152/PHYSIOL.00021.2010/ASSET/IMAGES/LARGE/PHY0051000300002.JPEG
Piro E, Serra G, Antona V, et al. Novel LRPPRC compound heterozygous mutation in a child with early-onset Leigh syndrome French-Canadian type: case report of an Italian patient. Ital J Pedatr. 2020;46(1):1-7. doi:10.1186/s13052-020-00903-7
Alston CL, Veling MT, Heidler J, et al. Pathogenic bi-allelic mutations in NDUFAF8 cause Leigh syndrome with an isolated complex I deficiency. Am J Hum Genet. 2020;106(1):92-101. doi:10.1016/j.ajhg.2019.12.001
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724-738. doi:10.1016/J.CMET.2011.08.016
Rose J, Brian C, Pappa A, Panayiotidis MI, Franco R. Mitochondrial metabolism in astrocytes regulates brain bioenergetics, neurotransmission and redox balance. Front Neurosci. 2020;14:1155. doi:10.3389/FNINS.2020.536682/BIBTEX
Romero-Morales A, Rastogi A, Temuri H, et al. Human iPSC-derived cerebral organoids model features of Leigh syndrome and reveal abnormal corticogenesis. Development. 2022;149(20):dev199914. doi:10.2139/ssrn.3611282
Robel S, Berninger B, Götz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci. 2011;12(2):88-104. doi:10.1038/nrn2978
Robel S, Mori T, Zoubaa S, et al. Conditional deletion of β1-integrin in astroglia causes partial reactive gliosis. Glia. 2009;57(15):1630-1647. doi:10.1002/glia.20876
Bantle CM, Hirst WD, Weihofen A, Shlevkov E. Mitochondrial dysfunction in astrocytes: a role in Parkinson's disease. Front Cell Dev Biol. 2021;8:608026. doi:10.3389/fcell.2020.608026
Russo I, Kaganovich A, Ding J, et al. Transcriptome analysis of LRRK2 knock-out microglia cells reveals alterations of inflammatory- and oxidative stress-related pathways upon treatment with α-synuclein fibrils. Neurobiol Dis. 2019;67:129-178. doi:10.1016/j.nbd.2019.05.012
Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 2008;7(4):312-320. doi:10.1016/j.cmet.2008.02.004
Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD. Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci USA. 2010;107(24):10996-11001. doi:10.1073/pnas.1006214107
Johnson SC, Yanos ME, Kayser EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524-1528. doi:10.1126/science.1244360
Corrà S, Cerutti R, Balmaceda V, Viscomi C, Zeviani M. Double administration of self-complementary AAV9NDUFS4 prevents Leigh disease in Ndufs4−/− mice. Brain. 2022;145(10):3405-3414. doi:10.1093/brain/awac182
Scheff SW, Price DA, Schmitt FA, Dekosky ST, Mufson EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology. 2007;68(18):1501-1508. doi:10.1212/01.WNL.0000260698.46517.8F
Cheng H-C, Ulane CM, Burke RE. Clinical progression in Parkinson's disease and the neurobiology of axons. Ann Neurol. 2010;67:715-725. doi:10.1002/ana.21995
Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. Brain. 2012;135(7):2058-2073. doi:10.1093/BRAIN/AWS133
Li H, Li S-H, Yu Z-X, Shelbourne P, Li X-J. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci. 2001;21(21):8473-8481. doi:10.1523/JNEUROSCI.21-21-08473.2001
Pathak D, Berthet A, Nakamura K. Energy failure: does it contribute to neurodegeneration? Ann Neurol. 2013;74:506-516. doi:10.1002/ana.24014
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci. 2018;19(2):63-80. doi:10.1038/nrn.2017.170
Shil SK, Kagawa Y, Umaru BA, et al. Ndufs4 ablation decreases synaptophysin expression in hippocampus. Sci Rep. 2021;11(1):10969. doi:10.1038/s41598-021-90127-4
Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol. 1998;143(2):351-358. doi:10.1083/JCB.143.2.351
Li H, Chen Y, Jones AF, et al. Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA. 2008;105(6):2169-2174. doi:10.1073/PNAS.0711647105
Ma H, Folmes CDL, Wu J, et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature. 2015;524(7564):234-238. doi:10.1038/nature14546
Lorenz C, Lesimple P, Bukowiecki R, et al. Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell. 2017;20(5):659-674.e9. doi:10.1016/j.stem.2016.12.013
Galera-Monge T, Zurita-Díaz F, Canals I, et al. Mitochondrial dysfunction and calcium dysregulation in leigh syndrome induced pluripotent stem cell derived neurons. Int J Mol Sci. 2020;21(9):3191. doi:10.3390/ijms21093191
Kang JS, Tian JH, Pan PY, et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell. 2008;132(1):137-148. doi:10.1016/J.CELL.2007.11.024
Obashi K, Okabe S. Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon. Eur J Neurosci. 2013;38(3):2350-2363. doi:10.1111/EJN.12263
Alix JJ, Domingues AM. White matter synapses: form, function, and dysfunction. Neurology. 2011;76(4):397-404. doi:10.1212/WNL.0b013e3182088273
Chang X, Wu Y, Zhou J, Meng H, Zhang W, Guo J. A meta-analysis and systematic review of Leigh syndrome: clinical manifestations, respiratory chain enzyme complex deficiency, and gene mutations. Medicine. 2020;99(5):e18634. doi:10.1097/MD.0000000000018634
Rahman S. Advances in the treatment of mitochondrial epilepsies. Epilepsy Behav. 2019;101:106546. doi:10.1016/j.yebeh.2019.106546
del Rey NLG, Quiroga-Varela A, Garbayo E, et al. Advances in Parkinson's disease: 200 years later. Front Neuroanat. 2018;12:113. doi:10.3389/FNANA.2018.00113/BIBTEX
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Prim. 2017;3(1):1-21. doi:10.1038/nrdp.2017.13
Hemelsoet DM, Vanlander AV, Smet J, et al. Leigh syndrome followed by parkinsonism in an adult with homozygous c.626C>T mutation in MTFMT. Neurol Genet. 2018;4((6)):e298. doi:10.1212/NXG.0000000000000298
Kung L, Roberts RC. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse. 1999;31(1):67-75. doi:10.1002/(SICI)1098-2396(199901)31:1<67::AID-SYN9>3.0.CO;2-#

Auteurs

Azizia Wahedi (A)

Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK.
Medical Sciences Division, University of Oxford, Oxford, UK.

Chandika Soondram (C)

Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK.
Department of Biochemistry, University College London, London, UK.

Alan E Murphy (AE)

UK Dementia Research Institute at Imperial College London, London, UK.
Department of Brain Sciences, Imperial College London, London, UK.

Nathan Skene (N)

UK Dementia Research Institute at Imperial College London, London, UK.
Department of Brain Sciences, Imperial College London, London, UK.

Shamima Rahman (S)

Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK.
Metabolic Unit, Great Ormond Street Hospital, London, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH