Dental calculus microbiome correlates with dietary intake.
16S
Mediterranean diet
Streptococcus
dental calculus
oral microbiome
Journal
Molecular oral microbiology
ISSN: 2041-1014
Titre abrégé: Mol Oral Microbiol
Pays: Denmark
ID NLM: 101524770
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
12
10
2022
received:
25
07
2022
accepted:
05
12
2022
medline:
12
5
2023
pubmed:
12
12
2022
entrez:
11
12
2022
Statut:
ppublish
Résumé
Dental calculus is the result of dental plaque mineralization, originating from the tooth-associated bacterial biofilm. Recent evidence revealed that the dental calculus microbiome has a more complex composition than previously considered, including an unstructured mix of both aerobes and anaerobes bacteria. Actually, we lack information about the influence of host lifestyle factors, such as diet and health on this highly biodiverse ecosystem. Here, we provide a pilot study investigating dental calculus microbial biodiversity and its relation with the host diet. We collected 40 dental calculus samples during routine dental inspection; deoxyribonucleic acid was extracted and analyzed through 16S amplicon sequencing, while dietary information was retrieved through a questionnaire. Associations between diet and oral bacteria taxonomy and functional pathways were statistically tested. Overall, microbiome composition was dominated by 10 phyla and 39 bacterial genera, which were differently distributed among samples. Cluster analysis revealed four main groups based on the taxonomic profile and two groups based on functional pathways. Each taxonomic cluster was dominated by different microbial biomarkers: Streptococcus, Rothia, Tannerella, Lautropia, and Fusobacterium. Bacteria genera and pathways were also associated with specific dietary elements, especially vegetable and fruit intake suggesting an overall effect of diet on dental calculus microbiome. The present study demonstrates that there exists an inter-variability in the microbial composition of dental calculus among individuals of a rather homogeneous population. Furthermore, the observed biodiversity and microbial functions can find an association with specific dietary habits, such as a high-fiber diet or a protein-rich diet.
Sections du résumé
BACKGROUND
Dental calculus is the result of dental plaque mineralization, originating from the tooth-associated bacterial biofilm. Recent evidence revealed that the dental calculus microbiome has a more complex composition than previously considered, including an unstructured mix of both aerobes and anaerobes bacteria. Actually, we lack information about the influence of host lifestyle factors, such as diet and health on this highly biodiverse ecosystem. Here, we provide a pilot study investigating dental calculus microbial biodiversity and its relation with the host diet.
METHODS
We collected 40 dental calculus samples during routine dental inspection; deoxyribonucleic acid was extracted and analyzed through 16S amplicon sequencing, while dietary information was retrieved through a questionnaire. Associations between diet and oral bacteria taxonomy and functional pathways were statistically tested.
RESULTS
Overall, microbiome composition was dominated by 10 phyla and 39 bacterial genera, which were differently distributed among samples. Cluster analysis revealed four main groups based on the taxonomic profile and two groups based on functional pathways. Each taxonomic cluster was dominated by different microbial biomarkers: Streptococcus, Rothia, Tannerella, Lautropia, and Fusobacterium. Bacteria genera and pathways were also associated with specific dietary elements, especially vegetable and fruit intake suggesting an overall effect of diet on dental calculus microbiome.
CONCLUSIONS
The present study demonstrates that there exists an inter-variability in the microbial composition of dental calculus among individuals of a rather homogeneous population. Furthermore, the observed biodiversity and microbial functions can find an association with specific dietary habits, such as a high-fiber diet or a protein-rich diet.
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Langues
eng
Pagination
189-197Informations de copyright
© 2022 The Authors. Molecular Oral Microbiology published by John Wiley & Sons Ltd.
Références
Aagaard, K., Petrosino, J., Keitel, W., Watson, M., Katancik, J., Garcia, N., Patel, S., Cutting, M., Madden, T., Hamilton, H., Harris, E., Gevers, D., Simone, G., McInnes, P., & Versalovic, J. (2013). The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 27(3), 1012-1022. https://doi.org/10.1096/fj.12-220806
Bailey, M. A., & Holscher, H. D. (2018). Microbiome-mediated effects of the Mediterranean diet on inflammation. Advances in Nutrition, 9(3), 193-206. https://doi.org/10.1093/advances/nmy013
Brown, L., Rosner, B., Willett, W. W., & Sacks, F. M. (1999). Cholesterol-lowering effects of dietary fiber: A meta-analysis. The American Journal of Clinical Nutrition, 69(1), 30-42. https://doi.org/10.1093/ajcn/69.1.30
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J., & Holmes, S. P. (2016). Bioconductor Workflow for Microbiome Data Analysis: From raw reads to community analyses. F1000Research, 5, 1492. https://doi.org/10.12688/f1000research.8986.2
Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C. R., Yu, W. -H., Lakshmanan, A., & Wade, W. G. (2010). The human oral microbiome. Journal of Bacteriology, 192(19), 5002-5017. https://doi.org/10.1128/JB.00542-10
Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6), 685-688. https://doi.org/10.1038/s41587-020-0548-6
Fagernäs, Z., Salazar-García, D. C., Haber Uriarte, M., Avilés Fernández, A., Henry, A. G., Lomba Maurandi, J., Ozga, A. T., Velsko, I. M., & Warinner, C. (2022). Understanding the microbial biogeography of ancient human dentitions to guide study design and interpretation. FEMS Microbes, 3, xtac006. https://doi.org/10.1093/femsmc/xtac006
Fellows Yates, J. A., Velsko, I. M., Aron, F., Posth, C., Hofman, C. A., Austin, R. M., Parker, C. E., Mann, A. E., Nägele, K., Arthur, K. W., Arthur, J. W., Bauer, C. C., Crevecoeur, I., Cupillard, C., Curtis, M. C., Dalén, L., Díaz-Zorita Bonilla, M., Díez Fernández-Lomana, J. C., Drucker, D. G., & … Warinner, C. (2021). The evolution and changing ecology of the African hominid oral microbiome. Proceedings of the National Academy of Sciences, 118(20), e2021655118. https://doi.org/10.1073/pnas.2021655118
Flores-Pérez, J. A., de la Rosa Oliva, F., Argenes, Y., & Meneses-Garcia, A. (2019). Nutrition, Cancer and Personalized Medicine. In E. Ruiz-Garcia, & H. Astudillo-de la Vega (Eds.), Translational research and onco-omics applications in the era of cancer personal genomics (pp. 157-168). Springer International Publishing. https://doi.org/10.1007/978-3-030-24100-1_11
Haase, E. M., Kou, Y., Sabharwal, A., Liao, Y. -C., Lan, T., Lindqvist, C., & Scannapieco, F. A. (2017). Comparative genomics and evolution of the amylase-binding proteins of oral streptococci. BMC Microbiology, 17(1), 94. https://doi.org/10.1186/s12866-017-1005-7
Hagan, R. W., Hofman, C. A., Hübner, A., Reinhard, K., Schnorr, S., Lewis, C. M., Sankaranarayanan, K., & Warinner, C. G. (2020). Comparison of extraction methods for recovering ancient microbial DNA from paleofeces. American Journal of Physical Anthropology, 171(2), 275-284. https://doi.org/10.1002/ajpa.23978
Han, Y. W. (2015). Fusobacterium nucleatum: A commensal-turned pathogen. Current Opinion in Microbiology, 23, 141-147. https://doi.org/10.1016/j.mib.2014.11.013
Hansen, T. H., Kern, T., Bak, E. G., Kashani, A., Allin, K. H., Nielsen, T., Hansen, T., & Pedersen, O. (2018). Impact of a vegan diet on the human salivary microbiota. Scientific Reports, 8(1), 5847. https://doi.org/10.1038/s41598-018-24207-3
Jenkins, D. J., Wolever, T. M., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., Goff, D. V., Metz, G. L., & Alberti, K. G. (1978). Dietary fibres, fibre analogues, and glucose tolerance: Importance of viscosity. British Medical Journal, 1(6124), 1392-1394. https://doi.org/10.1136/bmj.1.6124.1392
Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L., & Goff, D. V. (1981). Glycemic index of foods: A physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362-366. https://doi.org/10.1093/ajcn/34.3.362
Johnson, C. H., Patterson, A. D., Idle, J. R., & Gonzalez, F. J. (2012). Xenobiotic metabolomics: Major impact on the metabolome. Annual Review of Pharmacology and Toxicology, 52, 37-56. https://doi.org/10.1146/annurev-pharmtox-010611-134748
Josenhans, C., & Suerbaum, S. (2002). The role of motility as a virulence factor in bacteria. International Journal of Medical Microbiology, 291(8), 605-614. https://doi.org/10.1078/1438-4221-00173
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457-D462. https://doi.org/10.1093/nar/gkv1070
Koropatkin, N. M., Cameron, E. A., & Martens, E. C. (2012). How glycan metabolism shapes the human gut microbiota. Nature Reviews. Microbiology, 10(5), 323-335. https://doi.org/10.1038/nrmicro2746
Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y. S., De Vadder, F., Arora, T., Hallen, A., Martens, E., Björck, I., & Bäckhed, F. (2015). Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metabolism, 22(6), 971-982. https://doi.org/10.1016/j.cmet.2015.10.001
Li, J., Helmerhorst, E. J., Leone, C. W., Troxler, R. F., Yaskell, T., Haffajee, A. D., Socransky, S. S., & Oppenheim, F. G. (2004). Identification of early microbial colonizers in human dental biofilm. Journal of Applied Microbiology, 97(6), 1311-1318. https://doi.org/10.1111/j.1365-2672.2004.02420.x
Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe, 23(6), 705-715. https://doi.org/10.1016/j.chom.2018.05.012
Malm, C., Jakobsson, J., & Isaksson, A. (2019). Physical activity and sports-real health benefits: A review with insight into the public health of Sweden. Sports, 7(5), 127. https://doi.org/10.3390/sports7050127
Mark Welch, J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E., & Borisy, G. G. (2016). Biogeography of a human oral microbiome at the micron scale. Proceedings of the National Academy of Sciences of the United States of America, 113(6), E791-E800. https://doi.org/10.1073/pnas.1522149113
Millen, A. E., Dahhan, R., Freudenheim, J. L., Hovey, K. M., Li, L., McSkimming, D. I., Andrews, C. A., Buck, M. J., LaMonte, M. J., Kirkwood, K. L., Sun, Y., Murugaiyan, V., Tsompana, M., & Wactawski-Wende, J. (2022). Dietary carbohydrate intake is associated with the subgingival plaque oral microbiome abundance and diversity in a cohort of postmenopausal women. Scientific Reports, 12(1), 2643. https://doi.org/10.1038/s41598-022-06421-2
Radini, A., & Nikita, E. (2022). Beyond dirty teeth: Integrating dental calculus studies with osteoarchaeological parameters. Quaternary International, Advance online publication. https://doi.org/10.1016/j.quaint.2022.03.003
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60
Simon-Soro, A., Ren, Z., Krom, B. P., Hoogenkamp, M. A., Cabello-Yeves, P. J., Daniel, S. G., Bittinger, K., Tomas, I., Koo, H., & Mira, A. (2022). Polymicrobial Aggregates in Human Saliva Build the Oral Biofilm. MBio, 13(1), e0013122. https://doi.org/10.1128/mbio.00131-22
Smirnova, G. V., & Oktyabrsky, O. N. (2005). Glutathione in bacteria. Biochemistry. Biokhimiia, 70(11), 1199-1211. https://doi.org/10.1007/s10541-005-0248-3
Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent, R. L. (1998). Microbial complexes in subgingival plaque. Journal of Clinical Periodontology, 25(2), 134-144. https://doi.org/10.1111/j.1600-051x.1998.tb02419.x
Sofi, F., Macchi, C., Abbate, R., Gensini, G. F., & Casini, A. (2014). Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutrition, 17(12), 2769-2782. https://doi.org/10.1017/S1368980013003169
Statovci, D., Aguilera, M., MacSharry, J., & Melgar, S. (2017). The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Frontiers in Immunology, 8, 838. https://doi.org/10.3389/fimmu.2017.00838
Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., & Nishijima, M. (2014). Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. Plos One, 9(8), e105592. https://doi.org/10.1371/journal.pone.0105592
Tan, K. H., Seers, C. A., Dashper, S. G., Mitchell, H. L., Pyke, J. S., Meuric, V., Slakeski, N., Cleal, S. M., Chambers, J. L., McConville, M. J., & Reynolds, E. C. (2014). Porphyromonas gingivalis and Treponema denticola exhibit metabolic symbioses. PLoS Pathogens, 10(3), e1003955. https://doi.org/10.1371/journal.ppat.1003955
Tomova, A., Bukovsky, I., Rembert, E., Yonas, W., Alwarith, J., Barnard, N. D., & Kahleova, H. (2019). The effects of vegetarian and vegan diets on gut microbiota. Frontiers in Nutrition, 6, 47. https://doi.org/10.3389/fnut.2019.00047
Ursell, L. K., Metcalf, J. L., Parfrey, L. W., & Knight, R. (2012). Defining the human microbiome. Nutrition Reviews, 70(suppl_1), S38-S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x
Wade, W. G. (2013). The oral microbiome in health and disease. Pharmacological Research, 69(1), 137-143. https://doi.org/10.1016/j.phrs.2012.11.006
Wastyk, H. C., Fragiadakis, G. K., Perelman, D., Dahan, D., Merrill, B. D., Yu, F. B., Topf, M., Gonzalez, C. G., Van Treuren, W., Han, S., Robinson, J. L., Elias, J. E., Sonnenburg, E. D., Gardner, C. D., & Sonnenburg, J. L. (2021). Gut-microbiota-targeted diets modulate human immune status. Cell, 184(16), 4137-4153.e14. https://doi.org/10.1016/j.cell.2021.06.019
Willis, J. R., Saus, E., Iraola-Guzmán, S., Ksiezopolska, E., Cozzuto, L., Bejarano, L. A., Andreu-Somavilla, N., Alloza-Trabado, M., Blanco, A., Puig-Sola, A., Broglio, E., Carolis, C., Ponomarenko, J., Hecht, J., & Gabaldón, T. (2022). Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors. npj Biofilms and Microbiomes, 8(1), 1-11. https://doi.org/10.1038/s41522-022-00279-y
Zhang, C., Zhang, M., Wang, S., Han, R., Cao, Y., Hua, W., Mao, Y., Zhang, X., Pang, X., Wei, C., Zhao, G., Chen, Y., & Zhao, L. (2010). Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. The ISME Journal, 4(2), 232-241. https://doi.org/10.1038/ismej.2009.112