Flow cytometry: a tool for understanding the behaviour of polyhydroxyalkanoate accumulators.

Bioreactors Flow cytometry Mixed microbial cultures Polyhydroxyalkanoates

Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
Feb 2023
Historique:
received: 27 04 2022
accepted: 26 11 2022
revised: 24 11 2022
pubmed: 17 12 2022
medline: 19 1 2023
entrez: 16 12 2022
Statut: ppublish

Résumé

The use of mixed microbial cultures (MMCs) is seen as an attractive strategy for polyhydroxyalkanoate (PHA) production. In order to optimize the MMC-PHA production process, tools are required to improve our understanding of the physiological state of the PHA-storing microorganisms within the MMC. In the present study, we explored the use of flow cytometry to analyse the metabolic state and polyhydroxybutyrate (PHB) content of the microorganisms from an MMC-PHA production process. A sequencing batch reactor under a feast and famine regime was used to enrich an MMC with PHB-storing microorganisms. Interestingly, once the PHB-storing microorganisms are selected, the level of PHB accumulation depends largely on the metabolic state of these microorganisms and not exclusively on the consortium composition. These results demonstrate that flow cytometry is a powerful tool to help to understand the PHA storage response of an MMC-PHA production process. KEY POINTS: • Flow cytometry allows to measure PHB content and metabolic activity over time. • Microorganisms showing high PHB content also have high metabolic activity. • PHB producers with low metabolic activity show low PHB content.

Identifiants

pubmed: 36525042
doi: 10.1007/s00253-022-12318-x
pii: 10.1007/s00253-022-12318-x
doi:

Substances chimiques

Polyhydroxyalkanoates 0
polyhydroxybutyrate 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

581-590

Subventions

Organisme : Agencia Nacional de Investigación y Desarrollo
ID : Anillo de Investigación en Ciencia y Tecnología GAMBIO Project N° ACT172128
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : projecr for docrtoral thesis 21191476
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : Postdoctoral Fondecyt 3200748

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Alvarez HM, Steinbüchel A (2019) Biology of triacylglycerol accumulation by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus, 2nd edn. Springer Nature, Switzerland, pp 299–332. https://doi.org/10.1007/978-3-030-11461-9_11
Bengtsson S, Karlsson A, Alexandersson T, Quadri L, Hjort M, Johansson P, Morgan-Sagastume F, Anterrieu S, Arcos-Hernandez M, Karabegovic L, Magnusson P, Werker A (2017) A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. N Biotechnol 35:42–53. https://doi.org/10.1016/j.nbt.2016.11.005
doi: 10.1016/j.nbt.2016.11.005
Bodor A, Bounedjoum N, Vincze GE, ErdeinéKis Á, Laczi K, Bende G, Szilágyi Á, Kovács T, Perei K, Rákhely G (2020) Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Biotechnol 19:1–22. https://doi.org/10.1007/s11157-020-09522-4
doi: 10.1007/s11157-020-09522-4
Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci Rep 6:1–13. https://doi.org/10.1038/srep26612
doi: 10.1038/srep26612
Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837–849. https://doi.org/10.1007/s00253-011-3191-9
doi: 10.1007/s00253-011-3191-9
Chen Z, Guo Z, Wen Q, Huang L, Bakke R, Du M (2015) A new method for polyhydroxyalkanoate (PHA) accumulating bacteria selection under physical selective pressure. Int J Biol Macromol 72:1329–34. https://doi.org/10.1016/j.ijbiomac.2014.10.027
doi: 10.1016/j.ijbiomac.2014.10.027
Chen W, Jin Y, Xu D, Li W, Pan C, Li Y, Kang D, Zhang M, Zeng Z, Shan S, Zheng P (2022) Underlying function regulators of anaerobic granular sludge: Starvation and dormancy. Sci Total Environ 807:151024. https://doi.org/10.1016/J.SCITOTENV.2021.151024
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY (2020) Microbial polyhydroxyalkanoates and nonnatural polyesters. Adv Mater 32:1–37. https://doi.org/10.1002/adma.201907138
doi: 10.1002/adma.201907138
Çiĝgin AS, Orhon D, Rossetti S, Majone M (2011) Short-term and long-term effects on carbon storage of pulse feeding on acclimated or unacclimated activated sludge. Water Res 45:3119–3128. https://doi.org/10.1016/j.watres.2011.03.026
doi: 10.1016/j.watres.2011.03.026
Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030. https://doi.org/10.1128/JB.186.15.5017-5030.2004
doi: 10.1128/JB.186.15.5017-5030.2004
Degelau A, Scheper T, Bailey JE, Guske C (1995) Fluorometric measurement of poly-β hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry. Appl Microbiol Biotechnol 42:653–657. https://doi.org/10.1007/BF00171939
doi: 10.1007/BF00171939
Dias JML, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MGE, Ramos AM, Oliveira R, Reis MAM (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6:885–906. https://doi.org/10.1002/mabi.200600112
doi: 10.1002/mabi.200600112
Dionisi D, Majone M, Papa V, Beccari M (2004) Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng 85:569–579. https://doi.org/10.1002/bit.10910
doi: 10.1002/bit.10910
Dionisi D, Majone M, Vallini G, di Gregorio S, Beccari M (2006) Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnol Bioeng 93:76–88. https://doi.org/10.1002/BIT.20683
doi: 10.1002/bit.20683
Dionisi D, Majone M, Vallini G, di Gregorio S, Beccari M (2007) Effect of the Length of the Cycle on Biodegradable Polymer Production and Microbial Community Selection in a Sequencing Batch Reactor. Biotechnol Prog 23:1064–1073. https://doi.org/10.1021/BP060370C
doi: 10.1021/bp060370c
Gorenflo V, Steinbüchel A, Marose S, Rieseberg M, Scheper T (1999) Quantification of bacterial polyhydroxyalkanoic acids by Nile red staining. Appl Microbiol Biotechnol 51:765–772. https://doi.org/10.1007/s002530051460
doi: 10.1007/s002530051460
Guerra M, González K, González C, Parra B, Martínez M (2015) Dormancy in Deinococcus sp. UDEC-P1 as a survival strategy to escape from deleterious effects of carbon starvation and temperature. Int Microbiol 18:189–194. https://doi.org/10.2436/20.1501.01.249
doi: 10.2436/20.1501.01.249
Guo Z, Chen Z, Wen Q, Huang L, Bakke R, Du M (2016) Strategy to reduce the acclimation period for enrichment of PHA accumulating cultures. Desalin Water Treat 57:29286–29294. https://doi.org/10.1080/19443994.2016.1155177
doi: 10.1080/19443994.2016.1155177
Hong C, HaiBo L, YunFeng X (2010) Acclimating PHA storage capacity of activated sludge with static magnetic fields. Enzyme Microb Technol 46:594–597. https://doi.org/10.1016/j.enzmictec.2010.03.004
doi: 10.1016/j.enzmictec.2010.03.004
Huang L, Chen Z, Wen Q, Lee DJ (2017) Enhanced polyhydroxyalkanoate production by mixed microbial culture with extended cultivation strategy. Bioresour Technol 241:802–811. https://doi.org/10.1016/j.biortech.2017.05.192
doi: 10.1016/j.biortech.2017.05.192
Huang L, Chen Z, Wen Q, Zhao L, Lee DJ, Yang L, Wang Y (2018) Insights into feast-famine polyhydroxyalkanoate (PHA)-producer selection: microbial community succession, relationships with system function and underlying driving forces. Water Res 131:167–176. https://doi.org/10.1016/j.watres.2017.12.033
doi: 10.1016/j.watres.2017.12.033
Inoue D, Suzuki Y, Sawada K, Sei K (2018) Polyhydroxyalkanoate accumulation ability and associated microbial community in activated sludge-derived acetate-fed microbial cultures enriched under different temperature and pH conditions. J Biosci Bioeng 125:339–345. https://doi.org/10.1016/j.jbiosc.2017.09.008
doi: 10.1016/j.jbiosc.2017.09.008
James BW, Mauchline WS, Dennis PJ, Keevil CW, Wait R (1999) Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl Environ Microbiol 65:822–827
doi: 10.1128/AEM.65.2.822-827.1999
Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157. https://doi.org/10.3390/ijms17071157
doi: 10.3390/ijms17071157
Juzwa W, Duber A, Myszka K, Białas W, Czaczyk K (2016) Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting. Biofouling 32:841–851. https://doi.org/10.1080/08927014.2016.1201657
doi: 10.1080/08927014.2016.1201657
Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67. https://doi.org/10.1080/10408410590899228
doi: 10.1080/10408410590899228
Koller M, Niebelschütz H, Braunegg G (2013) Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci 13:549–562. https://doi.org/10.1002/elsc.201300021
doi: 10.1002/elsc.201300021
Korkakaki E, Loosdrecht MCMV, Kleerebezem R (2016) Bioresource technology survival of the fastest: selective removal of the side population for enhanced PHA production in a mixed substrate enrichment. Bioresour Technol 216:1022–1029. https://doi.org/10.1016/j.biortech.2016.05.125
doi: 10.1016/j.biortech.2016.05.125
Kumar P, Jun HB, Kim BS (2018) Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. Int J Biol Macromol 107:2552–2558. https://doi.org/10.1016/j.ijbiomac.2017.10.147
doi: 10.1016/j.ijbiomac.2017.10.147
Lee WS, Chua ASM, Yeoh HK, Nittami T, Ngoh GC (2015) Strategy for the biotransformation of fermented palm oil mill effluent into biodegradable polyhydroxyalkanoates by activated sludge. Chem Eng J 269:288–297. https://doi.org/10.1016/j.cej.2015.01.103
doi: 10.1016/j.cej.2015.01.103
Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. https://doi.org/10.1038/nrmicro2504
doi: 10.1038/nrmicro2504
Li X, Tao R jie, Tian M jia, Yuan Y, Huang Y, Li B lin (2021) Recovery and dormancy of nitrogen removal characteristics in the pilot-scale denitrification-partial nitrification-Anammox process for landfill leachate treatment. J Environ Manage 300:113711. https://doi.org/10.1016/J.JENVMAN.2021.113711
López NI, Floccari ME, Steinbüchel A, García AF, Méndez BS (1995) Effect of poly (3-hydroxybutyrate)(PHB) content on the starvation-survival of bacteria in natural waters. FEMS Microbiol Ecol 16:95–101. https://doi.org/10.1111/j.1574-6941.1995.tb00273.x
doi: 10.1111/j.1574-6941.1995.tb00273.x
Mohamad Fauzi AH, Chua ASM, Yoon LW, Nittami T, Yeoh HK (2019) Enrichment of PHA-accumulators for sustainable PHA production from crude glycerol. Process Saf Environ Prot 122:200–208. https://doi.org/10.1016/j.psep.2018.12.002
doi: 10.1016/j.psep.2018.12.002
Morgan-Sagastume F (2016) Characterisation of open, mixed microbial cultures for polyhydroxyalkanoate (PHA) production. Rev Environ Sci Biotechnol 15:593–625. https://doi.org/10.1007/s11157-016-9411-0
doi: 10.1007/s11157-016-9411-0
Mota MJ, Lopes RP, Simões MMQ, Delgadillo I, Saraiva JA (2019) Effect of high pressure on Paracoccus denitrificans growth and polyhydroxyalkanoates production from glycerol. Appl Biochem Biotechnol 188:810–823. https://doi.org/10.1007/s12010-018-02949-0
doi: 10.1007/s12010-018-02949-0
Oshiki M, Onuki M, Satoh H, Mino T (2013) Microbial community composition of polyhydroxyalkanoate-accumulating organisms in full-scale wastewater treatment plants operated in fully aerobic mode. Microbes Environ 28:96–104. https://doi.org/10.1264/jsme2.ME12141
doi: 10.1264/jsme2.ME12141
Pereira J, Queirós D, Lemos PC, Rossetti S, Serafim LS (2020) Enrichment of a mixed microbial culture of PHA-storing microorganisms by using fermented hardwood spent sulfite liquor. N Biotechnol 56:79–86. https://doi.org/10.1016/j.nbt.2019.12.003
doi: 10.1016/j.nbt.2019.12.003
Pinto-Ibieta F, Cea M, Cabrera F, Abanto M, Felissia FE, Area MC, Ciudad G (2020) Strategy for biological co-production of levulinic acid and polyhydroxyalkanoates by using mixed microbial cultures fed with synthetic hemicellulose hydrolysate. Bioresour Technol 309:123323. https://doi.org/10.1016/j.biortech.2020.123323
doi: 10.1016/j.biortech.2020.123323
Queirós D, Fonseca A, Rossetti S, Serafim LS, Lemos PC (2017) Highly complex substrates lead to dynamic bacterial community for polyhydroxyalkanoates production. J Ind Microbiol Biotechnol 44:1215–1224. https://doi.org/10.1007/s10295-017-1951-y
doi: 10.1007/s10295-017-1951-y
Ratcliff AW, Busse MD, Shestak CJ (2006) Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl Soil Ecol 34:114–124. https://doi.org/10.1016/j.apsoil.2006.03.002
doi: 10.1016/j.apsoil.2006.03.002
Reis MAM, Serafim LS, Lemos PC, Ramos AM, Aguiar FR, Van Loosdrecht MCM (2003) Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst Eng 25:377–385. https://doi.org/10.1007/s00449-003-0322-4
doi: 10.1007/s00449-003-0322-4
Saranya V, Krishnakumari, Krishnakumari MS, Suguna P, Binuramesh C, Abirami P, Rajeswari V, Ramachandran KB, Shenbagarathai R (2012) Quantification of intracellular polyhydroxyalkanoates by virtue of personalized flow cytometry protocol. Curr. Microbiol 65:589–594. https://doi.org/10.1007/s00284-012-0198-0
doi: 10.1007/s00284-012-0198-0
Serafim LS, Lemos PC, Oliveira R, Reis MAM (2004) Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87:145–160. https://doi.org/10.1002/bit.20085
doi: 10.1002/bit.20085
Singh Saharan B, Grewal A, Kumar P (2014) Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chinese J Biol 2014:1–18. https://doi.org/10.1155/2014/802984
doi: 10.1155/2014/802984
Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, Hesko O, Kucera D, Marova I, Obruca S (2018) Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol 102:1923–1931. https://doi.org/10.1007/s00253-018-8760-8
doi: 10.1007/s00253-018-8760-8
Tanamool V, Imai T, Danvirutai P, Kaewkannetra P (2011) Biosynthesis of polyhydroxyalkanoate (PHA) by Hydrogenophaga sp. isolated from soil environment during batch fermentation. J Life Sci 5:1003–1012
Valentino F, Karabegovic L, Majone M, Morgan-Sagastume F, Werker A (2015) Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Water Res 77:49–63. https://doi.org/10.1016/j.watres.2015.03.016
doi: 10.1016/j.watres.2015.03.016
Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619. https://doi.org/10.1128/JB.187.11.3607-3619.2005
doi: 10.1128/JB.187.11.3607-3619.2005
Wältermann M, Stöveken T, Steinbüchel A (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89:230–242. https://doi.org/10.1016/j.biochi.2006.07.013
doi: 10.1016/j.biochi.2006.07.013
Yamaguchi T, Narsico J, Kobayashi T, Inoue A, Ojima T (2019) Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J Biosci Bioeng 128:203–208. https://doi.org/10.1016/j.jbiosc.2019.02.008
doi: 10.1016/j.jbiosc.2019.02.008

Auteurs

Karina González (K)

Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile.

Alejandro Salinas (A)

Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile.
Scientific and Technological Bioresources Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile.

Fernanda Pinto (F)

Scientific and Technological Bioresources Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile.
Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile.

Rodrigo Navia (R)

Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile.
Scientific and Technological Bioresources Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile.

Shijie Liu (S)

College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA.

Mara Cea (M)

Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile. mara.cea@ufrontera.cl.
Scientific and Technological Bioresources Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile. mara.cea@ufrontera.cl.
Center of Waste Management and Bioenergy, BIOREN, Chemical Engineering Department, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile. mara.cea@ufrontera.cl.

Articles similaires

Humans Male Female Middle Aged Neoplasm, Residual
Animals Rumen Methane Fermentation Cannabis

Metabolic engineering of

Jae Sung Cho, Zi Wei Luo, Cheon Woo Moon et al.
1.00
Corynebacterium glutamicum Metabolic Engineering Dicarboxylic Acids Pyridines Pyrones

Classifications MeSH