Higher-order interactions shape microbial interactions as microbial community complexity increases.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 12 2022
Historique:
received: 21 05 2022
accepted: 28 11 2022
entrez: 31 12 2022
pubmed: 1 1 2023
medline: 4 1 2023
Statut: epublish

Résumé

Non-pairwise interactions, or higher-order interactions (HOIs), in microbial communities have been described as significant drivers of emergent features in microbiomes. Yet, the re-organization of microbial interactions between pairwise cultures and larger communities remains largely unexplored from a molecular perspective but is central to our understanding and further manipulation of microbial communities. Here, we used a bottom-up approach to investigate microbial interaction mechanisms from pairwise cultures up to 4-species communities from a simple microbiome (Hafnia alvei, Geotrichum candidum, Pencillium camemberti and Escherichia coli). Specifically, we characterized the interaction landscape for each species combination involving E. coli by identifying E. coli's interaction-associated mutants using an RB-TnSeq-based interaction assay. We observed a deep reorganization of the interaction-associated mutants, with very few 2-species interactions conserved all the way up to a 4-species community and the emergence of multiple HOIs. We further used a quantitative genetics strategy to decipher how 2-species interactions were quantitatively conserved in higher community compositions. Epistasis-based analysis revealed that, of the interactions that are conserved at all levels of complexity, 82% follow an additive pattern. Altogether, we demonstrate the complex architecture of microbial interactions even within a simple microbiome, and provide a mechanistic and molecular explanation of HOIs.

Identifiants

pubmed: 36587027
doi: 10.1038/s41598-022-25303-1
pii: 10.1038/s41598-022-25303-1
pmc: PMC9805437
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

22640

Subventions

Organisme : NCCIH NIH HHS
ID : DP2 AT010401
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007413
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

J Bacteriol. 1996 Mar;178(6):1663-70
pubmed: 8626295
Cell. 2014 Jul 17;158(2):422-433
pubmed: 25036636
Int J Food Microbiol. 2005 Jun 25;102(1):1-20
pubmed: 15924999
Nat Commun. 2020 Jul 30;11(1):3803
pubmed: 32732991
PLoS Biol. 2019 Dec 12;17(12):e3000550
pubmed: 31830028
Curr Opin Genet Dev. 2013 Dec;23(6):700-7
pubmed: 24290990
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
mBio. 2020 Oct 13;11(5):
pubmed: 33051365
Nature. 2017 Aug 10;548(7666):210-213
pubmed: 28746307
Curr Biol. 2019 May 6;29(9):1528-1535.e6
pubmed: 31031118
Nat Commun. 2018 Jan 23;9(1):336
pubmed: 29362365
mBio. 2020 Aug 11;11(4):
pubmed: 32788387
mBio. 2015 May 12;6(3):e00306-15
pubmed: 25968644
Cell Syst. 2019 Dec 18;9(6):521-533.e10
pubmed: 31838145
Evol Comput. 1999 Spring;7(1):69-101
pubmed: 10199996
Nat Commun. 2016 Aug 02;7:12285
pubmed: 27481625
Cell. 2001 Mar 23;104(6):901-12
pubmed: 11290327
Genetics. 2017 Mar;205(3):1079-1088
pubmed: 28100592
Front Microbiol. 2017 Nov 15;8:2224
pubmed: 29187837
Nat Ecol Evol. 2017 Mar 27;1(5):109
pubmed: 28812687
Nature. 2017 May 31;546(7656):56-64
pubmed: 28569813
Nat Microbiol. 2021 Jan;6(1):87-102
pubmed: 33139882
PLoS Comput Biol. 2021 Jan 22;17(1):e1008643
pubmed: 33481772
Environ Microbiol. 2020 Nov;22(11):4745-4760
pubmed: 32869420
Int J Food Microbiol. 2016 Nov 21;237:17-27
pubmed: 27541978
Cell Syst. 2019 Dec 18;9(6):519-520
pubmed: 31951552
BMC Genomics. 2014 Mar 26;15:235
pubmed: 24670012
ISME J. 2021 Mar;15(3):702-719
pubmed: 33077888
EcoSal Plus. 2008 Sep;3(1):
pubmed: 26443734
Microbiol Mol Biol Rev. 2011 Dec;75(4):583-609
pubmed: 22126995
Elife. 2021 Apr 20;10:
pubmed: 33877964
ISME J. 2021 Jul;15(7):2131-2145
pubmed: 33589765
Elife. 2018 Sep 13;7:
pubmed: 30211673
Trends Ecol Evol. 1998 Sep 1;13(9):350-5
pubmed: 21238339
PLoS Comput Biol. 2016 Sep 13;12(9):e1005079
pubmed: 27623159
Trends Genet. 2015 Jan;31(1):34-40
pubmed: 25284288
Nat Ecol Evol. 2017 Feb 17;1(3):62
pubmed: 28812740
Nat Commun. 2021 Apr 22;12(1):2365
pubmed: 33888697
Nat Rev Microbiol. 2018 Jun;16(6):383-390
pubmed: 29599459
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11951-E11960
pubmed: 30510004

Auteurs

Manon A Morin (MA)

School of Biological Science, University of California San Diego, San Diego, 92093, USA. manon.morin@ymail.com.

Anneliese J Morrison (AJ)

Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA.
Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.

Michael J Harms (MJ)

Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA.
Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.

Rachel J Dutton (RJ)

School of Biological Science, University of California San Diego, San Diego, 92093, USA. rjdutton@ucsd.edu.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Lakes Salinity Archaea Bacteria Microbiota
Female Biofilms Animals Lactobacillus Mice

Classifications MeSH