Enhanced perceptual task performance without deprivation in mice using medial forebrain bundle stimulation.

Go/No-go audition behavior lever pressing licking medial forebrain bundle motivation mouse perception perceptual decision-making reinforcement learning satiation

Journal

Cell reports methods
ISSN: 2667-2375
Titre abrégé: Cell Rep Methods
Pays: United States
ID NLM: 9918227360606676

Informations de publication

Date de publication:
19 12 2022
Historique:
received: 06 05 2022
revised: 04 10 2022
accepted: 09 11 2022
entrez: 2 1 2023
pubmed: 3 1 2023
medline: 3 1 2023
Statut: epublish

Résumé

Perceptual decision-making tasks are essential to many fields of neuroscience. Current protocols generally reward deprived animals with water. However, balancing animals' deprivation level with their well-being is challenging, and trial number is limited by satiation. Here, we present electrical stimulation of the medial forebrain bundle (MFB) as an alternative that avoids deprivation while yielding stable motivation for thousands of trials. Using licking or lever press as a report, MFB animals learnt auditory discrimination tasks at similar speed to water-deprived mice. Moreover, they more reliably reached higher accuracy in harder tasks, performing up to 4,500 trials per session without loss of motivation. MFB stimulation did not impact the underlying sensory behavior since psychometric parameters and response times are preserved. MFB mice lacked signs of metabolic or behavioral stress compared with water-deprived mice. Overall, MFB stimulation is a highly promising tool for task learning because it enhances task performance while avoiding deprivation.

Identifiants

pubmed: 36590697
doi: 10.1016/j.crmeth.2022.100355
pii: S2667-2375(22)00252-1
pmc: PMC9795331
doi:

Substances chimiques

Water 059QF0KO0R

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Pagination

100355

Informations de copyright

© 2022 The Authors.

Déclaration de conflit d'intérêts

None of the authors have any competing interests to declare.

Références

J Neurophysiol. 1998 Jul;80(1):1-27
pubmed: 9658025
Science. 2000 Jan 7;287(5450):125-8
pubmed: 10615045
Nat Neurosci. 2015 Apr;18(4):493-5
pubmed: 25751533
Neuron. 2015 Jun 17;86(6):1478-90
pubmed: 26051421
Int J Mol Sci. 2021 Aug 31;22(17):
pubmed: 34502404
Sci Rep. 2020 Dec 21;10(1):22362
pubmed: 33349672
J Comp Physiol Psychol. 1965 Oct;60(2):158-61
pubmed: 5832339
PLoS One. 2018 Sep 13;13(9):e0204066
pubmed: 30212542
Sci Rep. 2016 Jun 07;6:27389
pubmed: 27272438
Front Behav Neurosci. 2022 Apr 01;16:851067
pubmed: 35431828
Behav Neurosci. 1994 Jun;108(3):537-48
pubmed: 7917048
Brain Res. 1987 Sep 22;421(1-2):325-35
pubmed: 3500755
Neuron. 2019 Dec 18;104(6):1168-1179.e5
pubmed: 31727548
J Comp Physiol Psychol. 1966 Aug;62(1):95-101
pubmed: 5968283
Pharmacol Biochem Behav. 1984 Jan;20(1):73-7
pubmed: 6695003
Cell Rep. 2017 Sep 5;20(10):2513-2524
pubmed: 28877482
Behav Brain Res. 2020 Jan 27;378:112308
pubmed: 31629001
Brain Res. 1973 Feb 28;50(2):467-72
pubmed: 4705516
PLoS One. 2020 Jun 5;15(6):e0226722
pubmed: 32502210
eNeuro. 2022 Mar 15;9(2):
pubmed: 35228308
Pharmacol Rev. 2014 Jul;66(3):869-917
pubmed: 24973197
Elife. 2021 May 20;10:
pubmed: 34011433
J Neurophysiol. 1997 Aug;78(2):597-613
pubmed: 9307098
Neuron. 2022 Jan 19;110(2):280-296.e10
pubmed: 34741806
Nature. 2014 Jun 12;510(7504):263-7
pubmed: 24805237
Neurosci Biobehav Rev. 2010 Nov;35(2):129-50
pubmed: 20149820
J Comp Physiol Psychol. 1954 Dec;47(6):419-27
pubmed: 13233369
J Am Assoc Lab Anim Sci. 2013;52(3):233-9
pubmed: 23849404
J Comp Neurol. 1982 Mar 20;206(1):49-81
pubmed: 6124562
Psychopharmacology (Berl). 2007 Apr;191(3):507-20
pubmed: 17031711
Front Syst Neurosci. 2014 Sep 18;8:173
pubmed: 25278849
Mol Brain. 2016 Jan 28;9:11
pubmed: 26822304
PLoS One. 2014 Feb 10;9(2):e88678
pubmed: 24520413
Experientia. 1970 Oct 15;26(10):1092-3
pubmed: 5483753
Nat Neurosci. 2013 Jul;16(7):824-31
pubmed: 23799475
eNeuro. 2021 Feb 11;8(1):
pubmed: 33431508
Nature. 1999 Mar 4;398(6722):67-9
pubmed: 10078530
Front Behav Neurosci. 2018 May 03;12:84
pubmed: 29773982
Nat Neurosci. 2016 Mar;19(3):471-8
pubmed: 26780509
Science. 2019 Apr 19;364(6437):253
pubmed: 30948440
J Neurophysiol. 1986 Jul;56(1):63-79
pubmed: 3746401
Neuroscience. 2000;96(4):697-706
pubmed: 10727788
J Comp Neurol. 1963 Apr;120:259-95
pubmed: 13939939
Curr Protoc Mouse Biol. 2014 Jun 16;4(2):35-45
pubmed: 25723917
Sci Rep. 2020 Jul 22;10(1):12245
pubmed: 32699235

Auteurs

Antonin Verdier (A)

Institut de l'Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France.

Noémi Dominique (N)

Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, 75724 Paris, France.

Déborah Groussard (D)

Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, 75724 Paris, France.

Anna Aldanondo (A)

Institut de l'Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France.

Brice Bathellier (B)

Institut de l'Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France.

Sophie Bagur (S)

Institut de l'Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH