Regaining enamel color quality using enamel matrix derivative.

Amelogenin CIE L*a*b* Emdogain Hap Hydroxyapatite crystals Mineralization buffer

Journal

Medical molecular morphology
ISSN: 1860-1499
Titre abrégé: Med Mol Morphol
Pays: Japan
ID NLM: 101239023

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 11 11 2022
accepted: 22 12 2022
medline: 18 5 2023
pubmed: 10 1 2023
entrez: 9 1 2023
Statut: ppublish

Résumé

This study aimed to demonstrate and compare the accuracy of tooth shade selection due to the remineralized enamel crystal with enamel matrix derivative (EMD) in vitro. Etched enamel slices were immersed in four types of mineralization buffers for 16 h. Sodium fluoride (NaF) was added to final concentrations of 1-100 ppm with the mineralization buffer that demonstrated the highest mineralization efficiency. EMD was added to the mineralization buffer containing NaF to see if it has any remineralization capacities. The remineralized enamel crystal was analyzed by SEM and XRD. The tooth shade was evaluated by CIE L*a*b*. The results showed that, without NaF, plate-like nanocrystals were formed on the enamel surface, but with NaF, needle-like nanocrystals were formed. By adding EMD, a layer of well-compacted hydroxyapatite crystals was successfully precipitated onto the natural enamel surface. No significant differences were observed in the L* value of the mineralization surface pre-etching and after mineralization buffer containing NaF and EMD. A new method has been developed to recover the color quality of enamel, as well as to mineralize the tooth enamel by constructing hydroxyapatite crystals with mineralization buffers containing NaF and EMD on the etched tooth surface.

Identifiants

pubmed: 36622467
doi: 10.1007/s00795-022-00346-5
pii: 10.1007/s00795-022-00346-5
pmc: PMC10188587
doi:

Substances chimiques

Fluorides Q80VPU408O
enamel matrix proteins 0
Sodium Fluoride 8ZYQ1474W7
Hydroxyapatites 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

116-127

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s).

Références

Lefevrn ML, Manly RS (1938) Moisture, inorganic and organic contents of enamel and dentin from carious teeth. J Am Dent Assoc Dent Cosmos 25:233–242
Thylstrup A, Fejerskov O (1978) Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Commun Dent Oral Epidemiol 6:315–328
doi: 10.1111/j.1600-0528.1978.tb01173.x
Fontana M (2016) Enhancing fluoride: clinical human studies of alternatives or boosters for caries management. Caries Res 50(Suppl 1):22–37
pubmed: 27100833 doi: 10.1159/000439059
Wang H, Xiao Z, Yang J, Lu D, Kishen A, Li Y, Chen Z, Que K, Zhang Q, Deng X, Yang X, Cai Q, Chen N, Cong C, Guan B, Li T, Zhang X (2017) Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci Rep 7:40701
pubmed: 28079165 pmcid: 5228061 doi: 10.1038/srep40701
Premnath P, John J, Manchery N, Subbiah GK, Nagappan N, Subramani P (2019) Effectiveness of theobromine on enamel remineralization: a comparative in-vitro study. Cureus 11:e5686
pubmed: 31720155 pmcid: 6823004
Øgaard B (1989) Prevalence of white spot lesions in 19-near-olds: a study on untreated and orthodontically treated persons 5 years after treatment. Am J Orthod Dentofac Orthop 96:423–427
doi: 10.1016/0889-5406(89)90327-2
Oshiro M, Yamaguchi K, Takamizawa T, Inage H, Watanabe T, Irokawa A, Ando S, Miyazaki M (2007) Effect of CPP-ACP paste on tooth mineralization: an FE-SEM study. J Oral Sci 49:115–120
pubmed: 17634723 doi: 10.2334/josnusd.49.115
Apel C, Schäfer C, Gutknecht N (2003) Demineralization of Er:YAG and Er, Cr:YSGG laser-prepared enamel cavities in vitro. Caries Res 37:34–37
pubmed: 12566637 doi: 10.1159/000068228
Philip N (2019) State of the art enamel remineralization systems: the next frontier in caries management. Caries Res 53:284–295
pubmed: 30296788 doi: 10.1159/000493031
Chen H, Clarkson BH, Sun K, Mansfield JF (2005) Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Colloid Interface Sci 288:97–103
pubmed: 15927567 doi: 10.1016/j.jcis.2005.02.064
Chen H, Tang Z, Liu J, Sun K, Chang SR, Peters MC, Mansfield JF, Czajka-Jakubowska A, Clarkson BH (2006) Acellular synthesis of a human enamel-like microstructure. Adv Mater 18:1846–1851
doi: 10.1002/adma.200502401
Ren F, Ding Y, Ge X, Lu X, Wang K, Leng Y (2012) Growth of one-dimensional single-crystalline hydroxyapatite nanorods. J Cryst Growth 349:75–82
doi: 10.1016/j.jcrysgro.2012.04.003
Fan Y, Sun Z, Moradian-Oldak J (2009) Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials 30:478–483
pubmed: 18996587 doi: 10.1016/j.biomaterials.2008.10.019
Fan Y, Nelson JR, Alvarez JR, Hagan J, Berrier A, Xu X (2011) Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration. Acta Biomater 7:2293–2302
pubmed: 21256987 pmcid: 3074030 doi: 10.1016/j.actbio.2011.01.028
Termine JD, Belcourt AB, Christner PJ, Conn KM, Nylen MU (1980) Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel. J Biol Chem 255:9760–9768
pubmed: 7430099 doi: 10.1016/S0021-9258(18)43458-8
Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9:128–161
pubmed: 9603233 doi: 10.1177/10454411980090020101
Wen HB, Moradian-Oldak J, Fincham AG (1999) Modulation of apatite crystal growth on Bioglass by recombinant amelogenin. Biomaterials 20:1717–1725
pubmed: 10503973 doi: 10.1016/S0142-9612(99)00085-X
Iijima M, Moradian-Oldak J (2004) Control of octacalcium phosphate and apatite crystal growth by amelogenin matrices. J Mater Chem 14:1
doi: 10.1039/b401961j
Beniash E, Simmer JP, Margolis HC (2005) The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro. J Struct Biol 149:182–190
pubmed: 15681234 doi: 10.1016/j.jsb.2004.11.001
Danesi AL, Athanasiadou D, Mansouri A, Phen A, Neshatian M, Holcroft J, Bonde J, Ganss B, Carneiro KMM (2021) Uniaxial hydroxyapatite growth on a self-assembled protein scaffold. Int J Mol Sci 22:1
doi: 10.3390/ijms222212343
Gabe CM, Brookes SJ, Kirkham J (2017) Preparative SDS PAGE as an alternative to his-tag purification of recombinant amelogenin. Front Physiol 8:424
pubmed: 28670287 pmcid: 5472695 doi: 10.3389/fphys.2017.00424
Sculean A, Donos N, Windisch P, Brecx M, Gera I, Reich E, Karring T (1999) Healing of human intrabony defects following treatment with enamel matrix proteins or guided tissue regeneration. J Periodontal Res 34:310–322
pubmed: 10633886 doi: 10.1111/j.1600-0765.1999.tb02259.x
Wang F, Okawa H, Kamano Y, Niibe K, Kayashima H, Osathanon T, Pavasant P, Saeki M, Yatani H, Egusa H (2015) Controlled osteogenic differentiation of mouse mesenchymal stem cells by tetracycline-controlled transcriptional activation of amelogenin. PLoS ONE 10:e0145677
pubmed: 26709694 pmcid: 4692545 doi: 10.1371/journal.pone.0145677
Cao Y, Mei ML, Li QL, Lo EC, Chu CH (2014) Enamel prism-like tissue regeneration using enamel matrix derivative. J Dent 42:1535–1542
pubmed: 25193522 doi: 10.1016/j.jdent.2014.08.014
Ito S, Saito T, Toyooka CMA, Matsuda K (2001) In vitro mineral induction by immobilized phosphoprotein-effect of phosphoprotein concentration on interfacial tension for mineral induction. Jpn J Conserv Dent 44:79–85
Zhang YY, Wong HM, McGrath CPJ, Li QL (2018) In vitro and in vivo evaluation of electrophoresis-aided casein phosphopeptide-amorphous calcium phosphate remineralisation system on pH-cycling and acid-etching demineralised enamel. Sci Rep 8:8904
pubmed: 29891861 pmcid: 5995962 doi: 10.1038/s41598-018-27304-5
Cochrane NJ, Walker GD, Manton DJ, Reynolds EC (2012) Comparison of quantitative light-induced fluorescence, digital photography and transverse microradiography for quantification of enamel remineralization. Aust Dent J 57:271–276
pubmed: 22924348 doi: 10.1111/j.1834-7819.2012.01706.x
Wakamatsu N, Ogika M, Okano T, Murabayashi C, Kondo T, Iinuma M (2018) Effect of tooth surface coating material containing S-PRG filler on white spot lesions of young permanent teeth. Pediatr Dent J 28:40–45
doi: 10.1016/j.pdj.2017.09.001
Jiang T, Guo YR, Feng XW, Sa Y, Yang X, Wang M, Li P, Wang YN (2018) Hydrogen peroxide might bleach natural dentin by oxidizing phosphoprotein. J Dent Res 97:1339–1345
pubmed: 29939809 doi: 10.1177/0022034518784260
Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA Jr (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442
pubmed: 16627026 doi: 10.1016/j.bone.2006.02.059
Grynpas MD, Omelon S (2007) Transient precursor strategy or very small biological apatite crystals? Bone 41:162–164
pubmed: 17537689 doi: 10.1016/j.bone.2007.04.176
Ozawa H, Hoshi K, Amizuka N (2008) Current concepts of bone biomineralization. J Oral Biosci 50:1–14
doi: 10.1016/S1349-0079(08)80014-X
Suzuki O (2010) Biological role of synthetic octacalcium phosphate in bone formation and mineralization. J Oral Biosci 52:6–14
doi: 10.1016/S1349-0079(10)80002-7
Fan Y, Sun Z, Moradian-Oldak J (2009) Effect of fluoride on the morphology of calcium phosphate crystals grown on acid-etched human enamel. Caries Res 43:132–136
pubmed: 19321991 pmcid: 2814026 doi: 10.1159/000209346
Fan Y, Sun Z, Wang R, Abbott C, Moradian-Oldak J (2007) Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials 28:3034–3042
pubmed: 17382381 pmcid: 1995434 doi: 10.1016/j.biomaterials.2007.02.016
Iijima M, Moradian-Oldak J (2005) Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials 26:1595–1603
pubmed: 15522761 doi: 10.1016/j.biomaterials.2004.05.009
Miron RJ, Sculean A, Cochran DL, Froum S, Zucchelli G, Nemcovsky C, Donos N, Lyngstadaas SP, Deschner J, Dard M, Stavropoulos A, Zhang Y, Trombelli L, Kasaj A, Shirakata Y, Cortellini P, Tonetti M, Rasperini G, Jepsen S, Bosshardt DD (2016) Twenty years of enamel matrix derivative: the past, the present and the future. J Clin Periodontol 43:668–683
pubmed: 26987551 doi: 10.1111/jcpe.12546
Aoba T (1996) Recent observations on enamel crystal formation during mammalian amelogenesis. Anat Rec 245:208–218
pubmed: 8769664 doi: 10.1002/(SICI)1097-0185(199606)245:2<208::AID-AR8>3.0.CO;2-S
Pandya M, Diekwisch TGH (2021) Amelogenesis: transformation of a protein-mineral matrix into tooth enamel. J Struct Biol 213:107809
pubmed: 34748943 pmcid: 8665087 doi: 10.1016/j.jsb.2021.107809
Fan D, Du C, Sun Z, Lakshminarayanan R, Moradian-Oldak J (2009) In vitro study on the interaction between the 32 kDa enamelin and amelogenin. J Struct Biol 166:88–94
pubmed: 19263522 pmcid: 4507495 doi: 10.1016/j.jsb.2009.01.003
Pandya M, Lin T, Li L, Allen MJ, Jin T, Luan X, Diekwisch TGH (2017) Posttranslational amelogenin processing and changes in matrix assembly during enamel development. Front Physiol 8:790
pubmed: 29089900 pmcid: 5651044 doi: 10.3389/fphys.2017.00790
Alexander L, Klug HP (1950) Determination of crystallite size with the X-ray spectrometer. J Appl Phys 21:137–142
doi: 10.1063/1.1699612
Sakae T, Davies JE, Frank RM, Nagai N (1989) Crystallographic properties of a series of synthetic hydroxyapatites. J Nihon Univ Sch Dent 31:458–463
pubmed: 2778495 doi: 10.2334/josnusd1959.31.458
Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 02:154–160
doi: 10.4236/wjnse.2012.23020
Ooi CY, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33:1171–1177
doi: 10.1016/j.ceramint.2006.04.001
Nylen MU (1979) Matrix–mineral relationships—a morphologist’s viewpoint. J Dent Res 58:922–929
pubmed: 283134 doi: 10.1177/00220345790580024601
Fearnhead RW (1979) Matrix–mineral relationships in enamel tissues. J Dent Res 58:909–921
pubmed: 283133 doi: 10.1177/00220345790580024501
Aoba T, Tanabe T, Moreno EC (1987) Function of amelogenins in porcine enamel mineralization during the secretory stage of amelogenesis. Adv Dent Res 1:252–260
pubmed: 3504174 doi: 10.1177/08959374870010021401
O’Brien WJ, Groh CL, Boenke KM (1990) A new, small-color-difference equation for dental shades. J Dent Res 69:1762–1764
pubmed: 2229615 doi: 10.1177/00220345900690111001
Kim NH, Tominaga K, Tanaka A (2005) Analysis of eosinophilic round bodies formed after injection of enamel matrix derivative into the backs of rats. J Periodontol 76:1934–1941
pubmed: 16274313 doi: 10.1902/jop.2005.76.11.1934
Paravina RD, Kimura M, Powers JM (2006) Color compatibility of resin composites of identical shade designation. Quintessence Int 37:713–719
pubmed: 17017633

Auteurs

Hiroyuki Sugaya (H)

Division of Pediatric, Dentistry School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan.

Yoshihito Kurashige (Y)

Division of Pediatric, Dentistry School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan.

Kai Suzuki (K)

Division of Pediatric, Dentistry School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan.

Sayaka Sakakibara (S)

Division of Pediatric, Dentistry School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan.

Yusuke Fujita (Y)

Division of Pediatric, Dentistry School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan.

Syed Taufiqul Islam (ST)

Division of Pediatric, Dentistry School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan.

Takashi Nezu (T)

Division of Biomaterials and Bioengineering, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Japan.

Shuichi Ito (S)

Division of Dental Education Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Japan.

Yoshihiro Abiko (Y)

Division of Oral Medicine and Pathology, Dentistry School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Japan.

Masato Saitoh (M)

Division of Pediatric, Dentistry School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan. msaitoh@hoku-iryo-u.ac.jp.

Articles similaires

Sodium Fluoride Gallic Acid Humans Microscopy, Electron, Scanning Dentin Sensitivity

The Effect of Actives in Desensitizing and Conventional Mouth Rinses Against Dentin Erosive Wear.

Diana Roberta Pereira Grandizoli, Letícia Oba Sakae, Ana Luísa Meira Renzo et al.
1.00
Mouthwashes Humans Tooth Erosion Dentin Desensitizing Agents Sodium Fluoride
Humans Dental Enamel Tooth Remineralization X-Ray Microtomography Toothpastes
Groundwater Saudi Arabia Fluorides Nitrates Humans

Classifications MeSH