γδ T cells are effectors of immunotherapy in cancers with HLA class I defects.
Humans
Colonic Neoplasms
/ drug therapy
Histocompatibility Antigens Class I
/ genetics
Immune Checkpoint Inhibitors
/ pharmacology
Immunotherapy
Receptors, Antigen, T-Cell, gamma-delta
/ immunology
T-Lymphocytes
/ immunology
beta 2-Microglobulin
/ deficiency
DNA Mismatch Repair
/ genetics
Receptors, KIR
Cell Line, Tumor
Organoids
Antigen Presentation
Genes, MHC Class I
/ genetics
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
16
07
2021
accepted:
24
11
2022
pubmed:
12
1
2023
medline:
28
1
2023
entrez:
11
1
2023
Statut:
ppublish
Résumé
DNA mismatch repair-deficient (MMR-d) cancers present an abundance of neoantigens that is thought to explain their exceptional responsiveness to immune checkpoint blockade (ICB)
Identifiants
pubmed: 36631610
doi: 10.1038/s41586-022-05593-1
pii: 10.1038/s41586-022-05593-1
pmc: PMC9876799
doi:
Substances chimiques
Histocompatibility Antigens Class I
0
Immune Checkpoint Inhibitors
0
Receptors, Antigen, T-Cell, gamma-delta
0
beta 2-Microglobulin
0
PDCD1 protein, human
0
Receptors, KIR
0
CTLA4 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
743-750Commentaires et corrections
Type : CommentIn
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2023. The Author(s).
Références
Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).
doi: 10.1038/363558a0
Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).
doi: 10.1038/nature24673
Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).
doi: 10.1056/NEJMoa1604958
Gettinger, S. et al. Impaired HLA class i antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).
doi: 10.1158/2159-8290.CD-17-0593
Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).
doi: 10.1038/s41467-017-01062-w
Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).
doi: 10.1126/science.aan6733
Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet. Oncol. 18, 1182–1191 (2017).
doi: 10.1016/S1470-2045(17)30422-9
Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).
doi: 10.1200/JCO.2017.76.9901
Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).
doi: 10.1038/s41591-020-0805-8
Dolcetti, R. et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol. 154, 1805–1813 (1999).
doi: 10.1016/S0002-9440(10)65436-3
Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).
doi: 10.1038/nature13954
Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).
doi: 10.1158/1078-0432.CCR-13-3271
Bicknell, D. C., Kaklamanis, L., Hampson, R., Bodmer, W. F. & Karran, P. Selection for β
doi: 10.1016/S0960-9822(02)70795-1
Kloor, M. et al. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res. 65, 6418–6424 (2005).
doi: 10.1158/0008-5472.CAN-05-0044
Dierssen, J. W. et al. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer 7, 33 (2007).
doi: 10.1186/1471-2407-7-33
Ijsselsteijn, M. E. et al. Revisiting immune escape in colorectal cancer in the era of immunotherapy. Br. J. Cancer 120, 815–818 (2019).
doi: 10.1038/s41416-019-0421-x
Hughes, E. A., Hammond, C. & Cresswell, P. Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc. Natl Acad. Sci. USA 94, 1896–1901 (1997).
doi: 10.1073/pnas.94.5.1896
Middha, S. et al. Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis. Oncol. 3, 1–14 (2019).
Groh, V. et al. Human lymphocytes bearing T cell receptor γ/δ are phenotypically diverse and evenly distributed throughout the lymphoid system. J. Exp. Med. 169, 1277–1294 (1989).
doi: 10.1084/jem.169.4.1277
Silva-Santos, B., Mensurado, S. & Coffelt, S. B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).
doi: 10.1038/s41568-019-0153-5
Halary, F. et al. Control of self-reactive cytotoxic T lymphocytes expressing γδ T cell receptors by natural killer inhibitory receptors. Eur. J. Immunol. 27, 2812–2821 (1997).
doi: 10.1002/eji.1830271111
de Vries, N. L. et al. High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity. Gut 69, 691–703 (2020).
doi: 10.1136/gutjnl-2019-318672
van der Velden, D. L. et al. The Drug Rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature 574, 127–131 (2019).
doi: 10.1038/s41586-019-1600-x
Danaher, P. et al. Gene expression markers of tumor infiltrating leukocytes. J. Immunother. Cancer 5, 18 (2017).
doi: 10.1186/s40425-017-0215-8
Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).
doi: 10.1038/s41586-019-1689-y
Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).
doi: 10.1038/s41467-018-05072-0
Kwon, M. et al. Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov. 11, 2168–2185 (2021).
doi: 10.1158/2159-8290.CD-21-0219
Wu, Y. et al. An innate-like Vδ1
doi: 10.1126/scitranslmed.aax9364
Wu, Y. et al. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. Nat. Cancer 3, 696–709 (2022).
doi: 10.1038/s43018-022-00376-z
Maeurer, M. J. et al. Human intestinal Vδ1
doi: 10.1084/jem.183.4.1681
Siegers, G. M., Ribot, E. J., Keating, A. & Foster, P. J. Extensive expansion of primary human gamma delta T cells generates cytotoxic effector memory cells that can be labeled with feraheme for cellular MRI. Cancer Immunol. Immunother. 62, 571–583 (2013).
doi: 10.1007/s00262-012-1353-y
Wu, D. et al. Ex vivo expanded human circulating Vδ1 γδT cells exhibit favorable therapeutic potential for colon cancer. Oncoimmunology 4, e992749 (2015).
doi: 10.4161/2162402X.2014.992749
Almeida, A. R. et al. Delta one T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof of concept. Clin. Cancer Res. 22, 5795–5804 (2016).
doi: 10.1158/1078-0432.CCR-16-0597
Mikulak, J. et al. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight 4, e125884 (2019).
doi: 10.1172/jci.insight.125884
van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8
doi: 10.1038/s41568-019-0235-4
Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).
doi: 10.1126/science.279.5357.1737
Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).
doi: 10.1073/pnas.96.12.6879
Poggi, A. et al. Vδ1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res. 64, 9172–9179 (2004).
doi: 10.1158/0008-5472.CAN-04-2417
Hause, R. J., Pritchard, C. C., Shendure, J. & Salipante, S. J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 1342–1350 (2016).
doi: 10.1038/nm.4191
Cader, F. Z. et al. A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nat. Med. 26, 1468–1479 (2020).
doi: 10.1038/s41591-020-1006-1
Germano, G. et al. CD4 T cell-dependent rejection of beta-2 microglobulin null mismatch repair-deficient tumors. Cancer Discov. 11, 1844–1859 (2021).
doi: 10.1158/2159-8290.CD-20-0987
Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).
doi: 10.1038/nbt.2203
Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689 (2018).
doi: 10.1016/j.ccell.2018.03.007
Thorsson, V. et al. The immune landscape of cancer. Immunity 51, 411–412 (2019).
doi: 10.1016/j.immuni.2019.08.004
Huang, M. N. et al. MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations. Sci. Rep. 5, 13321 (2015).
doi: 10.1038/srep13321
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635
Shale, C. et al. Unscrambling cancer genomes via integrated analysis of structural variation and copy number. Cell Genomics 2, 100112 (2022).
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
doi: 10.1038/nbt.1754
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
doi: 10.1038/s41592-019-0686-2
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
doi: 10.1093/nar/gkv007
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
doi: 10.1186/gb-2014-15-2-r29
Hall, G. et al. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma. Pathology 42, 409–413 (2010).
doi: 10.3109/00313025.2010.493871
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).
doi: 10.1038/nmeth.4380
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
doi: 10.1016/j.cell.2019.05.031
McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).
doi: 10.1038/s41592-019-0433-8
Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).
doi: 10.1038/nbt.4091
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv https://arxiv.org/abs/1802.03426 (2018).
Ijsselsteijn, M. E., van der Breggen, R., Farina Sarasqueta, A., Koning, F. & de Miranda, N. F. C. C. A 40-marker panel for high dimensional characterization of cancer immune microenvironments by imaging mass cytometry. Front. Immunol. 10, 2534–2534 (2019).
doi: 10.3389/fimmu.2019.02534
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
doi: 10.1038/s41592-019-0582-9
Ijsselsteijn, M. E., Somarakis, A., Lelieveldt, B. P. F., Höllt, T. & de Miranda, N. Semi-automated background removal limits data loss and normalises imaging mass cytometry data. Cytometry A 99, 1187–1197 (2021).
doi: 10.1002/cyto.a.24480
Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
doi: 10.1186/gb-2006-7-10-r100
Somarakis, A., Van Unen, V., Koning, F., Lelieveldt, B. P. F. & Hollt, T. ImaCytE: visual exploration of cellular microenvironments for imaging mass cytometry data. IEEE Trans. Vis. Comp. Graph. 27, 98–110 (2019).
van der Maaten, L. J. P. & Hinton, G. E. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Höllt, T. et al. Cytosplore: interactive immune cell phenotyping for large single-cell datasets. Comput. Graph. Forum 35, 171–180 (2016).
Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598 (2018).
doi: 10.1016/j.cell.2018.07.009
Cattaneo, C. M. et al. Tumor organoid-T-cell coculture systems. Nat. Protoc. 15, 15–39 (2020).
doi: 10.1038/s41596-019-0232-9
Dutta, I., Postovit, L. M. & Siegers, G. M. Apoptosis induced via gamma delta T cell antigen receptor “blocking” antibodies: a cautionary tale. Front. Immunol. 8, 776 (2017).
doi: 10.3389/fimmu.2017.00776