Molecular and Computational Analysis Identify Statins as Selective Inhibitors of Human Butyrylcholinesterase.
Humans
Acetylcholinesterase
/ chemistry
Atorvastatin
/ pharmacology
Butyrylcholinesterase
/ chemistry
Cholinesterase Inhibitors
/ pharmacology
Hydroxymethylglutaryl-CoA Reductase Inhibitors
/ pharmacology
Lovastatin
Molecular Docking Simulation
Rosuvastatin Calcium
/ pharmacology
Simvastatin
Structure-Activity Relationship
Acetylcholinesterase
Butyrylcholinesterase
Lipid Metabolism
Molecular Docking
Statins
Journal
The protein journal
ISSN: 1875-8355
Titre abrégé: Protein J
Pays: Netherlands
ID NLM: 101212092
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
accepted:
07
01
2023
medline:
6
4
2023
pubmed:
18
1
2023
entrez:
17
1
2023
Statut:
ppublish
Résumé
Cholinesterase enzyme family consists of acetylcholinesterase (AChE, 3.1.1.7), the major enzyme responsible for hydrolysis of acetylcholine at cholinergic synapses, and butyrylcholinesterase (BChE, 3.1.1.8) a detoxification enzyme of plasma. Statins are cholesterol-lowering medications utilized as protective medicaments in stroke and Alzheimer's disease, which cholinesterases are associated with. Thus, in this study, we characterized the inhibitory effects and mechanisms of common statins, rosuvastatin, atorvastatin, simvastatin and lovastatin, on human erythrocyte AChE and purified serum BChE using in vitro and in silico methods. Kinetic assays identified statins as selective non-competitive inhibitors of human serum BChE. The IC
Identifiants
pubmed: 36648628
doi: 10.1007/s10930-023-10090-z
pii: 10.1007/s10930-023-10090-z
doi:
Substances chimiques
Acetylcholinesterase
EC 3.1.1.7
Atorvastatin
A0JWA85V8F
Butyrylcholinesterase
EC 3.1.1.8
Cholinesterase Inhibitors
0
Hydroxymethylglutaryl-CoA Reductase Inhibitors
0
Lovastatin
9LHU78OQFD
Rosuvastatin Calcium
83MVU38M7Q
Simvastatin
AGG2FN16EV
BCHE protein, human
EC 3.1.1.8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
104-111Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Soreq H, Seidman S (2001) Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci 2(4):294–302
doi: 10.1038/35067589
pubmed: 11283752
Lockridge O (2015) Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 148:34–46
doi: 10.1016/j.pharmthera.2014.11.011
pubmed: 25448037
Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4(2):131–138
doi: 10.1038/nrn1035
pubmed: 12563284
Bodur E, Cokugras AN, Tezcan EF (2001) Inhibition effects of benactyzine and drofenine on human serum butyrylcholinesterase. Arch Biochem Biophys 386(1):25–29
doi: 10.1006/abbi.2000.2188
pubmed: 11360997
Ryhanen RJ (1983) Pseudocholinesterase activity in some human body fluids. Gen Pharmacol 14(4):459–460
doi: 10.1016/0306-3623(83)90030-7
pubmed: 6618149
Jain R, Kutty KM, Huang SN, Kean K (1983) Pseudocholinesterase/high-density lipoprotein cholesterol ratio in serum of normal persons and of hyperlipoproteinemics. Clin Chem 29(6):1031–1033
doi: 10.1093/clinchem/29.6.1031
pubmed: 6851089
Iwasaki T, Yoneda M, Nakajima A, Terauchi Y (2007) Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med 46(19):1633–1639
doi: 10.2169/internalmedicine.46.0049
pubmed: 17917325
Bulut S, Bodur E, Colak R, Turnagol H (2013) Effects of conjugated linoleic acid supplementation and exercise on post-heparin lipoprotein lipase, butyrylcholinesterase, blood lipid profile and glucose metabolism in young men. Chem Biol Interact 203(1):323–329
doi: 10.1016/j.cbi.2012.09.022
pubmed: 23073171
Valle-Martos R, Valle M, Martos R, Cañete R, Jiménez-Reina L, Cañete MD (2021) Liver enzymes correlate with metabolic syndrome, inflammation, and endothelial dysfunction in Prepubertal Children with obesity. Front Pediatr 16:9:629346
doi: 10.3389/fped.2021.629346
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H (2021) Structure and therapeutic uses of butyrylcholinesterase: application in detoxification, Alzheimer’s disease, and fat metabolism. Med Res Rev 41(2):858–901
doi: 10.1002/med.21745
pubmed: 33103262
Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19(1):117–125
doi: 10.1111/j.1472-8206.2004.00299.x
pubmed: 15660968
Kosowski M, Smolarczyk-Kosowska J, Hachuła M, Maligłówka M, Basiak M, Machnik G, Pudlo R, Okopień B (2021) The Effects of statins on neurotransmission and their neuroprotective role in Neurological and Psychiatric Disorders. Molecules 26(10):2838
doi: 10.3390/molecules26102838
pubmed: 34064670
pmcid: 8150718
Lerouet D, Marchand-Leroux C, Besson VC (2021) Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol 35(3):524–538
doi: 10.1111/fcp.12656
pubmed: 33527472
pmcid: 9290810
Haidar MK, Timur SS, Kazanci A, Turkoglu OF, Gürsoy RN, Nemutlu E, Sargon MF, Bodur E, Gök M, Ulubayram K, Öner L, Eroğlu H (2020) Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats. Eur J Pharm Biopharm 153:1–13
doi: 10.1016/j.ejpb.2020.05.032
pubmed: 32504798
Muacević-Kataneca D, Bradamante V, Reinec Z, Sucić M, Poljicanin T, Busljeta I, Metelko Z (2005) Clinical study on the effect of simvastatin on butyrylcholinesterase activity. Arzneimittelforschung 55(5):271–275
pubmed: 15960426
Darvesh S, Martin E, Walsh R, Rockwood K (2004) Clin Biochem 37(1):42–49
doi: 10.1016/j.clinbiochem.2003.09.004
pubmed: 14675561
Pytel E, Bukowska B, Koter-Michalak M, Olszewska-Banaszczyk M, Gorzelak-Pabiś P, Broncel M (2017) Effect of intensive lipid-lowering therapies on cholinesterase activity in patients with coronary artery disease. Pharmacol Rep 69(1):150–155
doi: 10.1016/j.pharep.2016.09.016
pubmed: 27923158
Cibicková L, Palicka V, Cibicek N, Cermáková E, Micuda S, Bartosová L, Jun D (2007) Differential effects of statins and alendronate on cholinesterases in serum and brain of rats. Physiol Res 56(6):765–770
doi: 10.33549/physiolres.931121
pubmed: 17087598
Gelosa P, Castiglioni L, Camera M, Sironi L (2020) Repurposing of drugs approved for cardiovascular diseases: opportunity or mirage? Biochem Pharmacol 177:113895
doi: 10.1016/j.bcp.2020.113895
pubmed: 32145263
Samant NP, Gupta GL (2021) Novel therapeutic strategies for Alzheimer’s disease targeting brain cholesterol homeostasis. Eur J Neurosci 53(2):673–686
doi: 10.1111/ejn.14949
pubmed: 32852876
Bodur E (2010) Human serum butyrylcholinesterase interactions with cisplatin and cyclophosphamide. Biochimie 92(8):979–984
doi: 10.1016/j.biochi.2010.04.010
pubmed: 20417682
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95
doi: 10.1016/0006-2952(61)90145-9
pubmed: 13726518
Lu C, Wu C, Ghoreishi D, Chen W, Wang L, Damm W et al (2021) OPLS4: improving Force Field Accuracy on challenging regimes of Chemical Space. J Chem Theory Comput 17(7):4291–4300
doi: 10.1021/acs.jctc.1c00302
pubmed: 34096718
Chalupova K, Korabecny J, Bartolini M, Monti B, Lamba D, Caliandro R et al (2019) Novel tacrine-tryptophan hybrids: multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur J Med Chem 168:491–514
doi: 10.1016/j.ejmech.2019.02.021
pubmed: 30851693
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242
doi: 10.1093/nar/28.1.235
pubmed: 10592235
pmcid: 102472
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234
doi: 10.1007/s10822-013-9644-8
pubmed: 23579614
Rosenberry TL, Brazzolotto X, Macdonald IR, Wandhammer M, Trovaslet-Leroy M, Darvesh S et al (2017) Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study.Molecules. ;22(12)