A Highly Translatable Dual-arm Local Delivery Strategy To Achieve Widespread Therapeutic Coverage in Healthy and Tumor-bearing Brain Tissues.

brain extracellular space drug delivery nanoparticles extracellular matrix (ECM) modulation infusate osmolality local infusion

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
03 2023
Historique:
revised: 17 12 2022
received: 23 11 2022
pmc-release: 01 03 2024
pubmed: 19 1 2023
medline: 17 3 2023
entrez: 18 1 2023
Statut: ppublish

Résumé

Drug delivery nanoparticles (NPs) based entirely on materials generally recognized as safe that provide widespread parenchymal distribution following intracranial administration via convection-enhanced delivery (CED) are introduced. Poly(lactic-co-glycolic acid) (PLGA) NPs are coated with various poloxamers, including F68, F98, or F127, via physical adsorption to render particle surfaces non-adhesive, thereby resisting interactions with brain extracellular matrix. F127-coated PLGA (F127/PLGA) NPs provide markedly greater distribution in healthy rat brains compared to uncoated NPs and widespread coverage in orthotopically-established brain tumors. Distribution analysis of variously-sized F127/PLGA NPs determines the average rat brain tissue porosity to be between 135 and 170 nm while revealing unprecedented brain coverage of larger F127/PLGA NPs with an aid of hydraulic pressure provided by CED. Importantly, F127/PLGA NPs can be lyophilized for long-term storage without compromising their ability to penetrate the brain tissue. Further, 65- and 200-nm F127/PLGA NPs lyophilized-reconstituted and administered in a moderately hyperosmolar infusate solution show further enhance particle dissemination in the brain via osmotically-driven enlargement of the brain tissue porosity. Combination of F127/PLGA NPs and osmotic tissue modulation provides a means with a clear regulatory path to maximize the brain distribution of large NPs that enable greater drug loading and prolong drug release.

Identifiants

pubmed: 36651002
doi: 10.1002/smll.202207278
pmc: PMC10082594
mid: NIHMS1875533
doi:

Substances chimiques

Polylactic Acid-Polyglycolic Acid Copolymer 1SIA8062RS
Polyglycolic Acid 26009-03-0
Lactic Acid 33X04XA5AT
Drug Carriers 0
UCON 50-HB-5100 9038-95-3

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2207278

Subventions

Organisme : NEI NIH HHS
ID : P30 EY001765
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS119609
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB030409
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS111102
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA204968
Pays : United States

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

Sci Rep. 2020 Apr 24;10(1):6952
pubmed: 32332821
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11751-6
pubmed: 23818631
Neurosurgery. 2010 Mar;66(3):530-7; discussion 537
pubmed: 20173548
Curr Nanosci. 2018 Oct;14(5):448-453
pubmed: 30532669
Results Pharma Sci. 2012;2:79-85
pubmed: 23316451
J Physiol. 2002 Jul 15;542(Pt 2):515-27
pubmed: 12122149
ACS Nano. 2014 Oct 28;8(10):10655-64
pubmed: 25259648
Int J Pharm. 2009 Jun 5;374(1-2):90-5
pubmed: 19446764
J Control Release. 2022 Apr;344:225-234
pubmed: 35296406
Sci Transl Med. 2012 Aug 29;4(149):149ra119
pubmed: 22932224
Biomaterials. 2016 Oct;105:136-144
pubmed: 27521616
Exp Neurol. 2006 Dec;202(2):497-505
pubmed: 16962582
Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8306-11
pubmed: 10890922
J Neurosurg. 2010 Aug;113(2):301-9
pubmed: 20020841
Mol Pharm. 2013 May 6;10(5):1492-504
pubmed: 23298378
J Control Release. 2017 Dec 10;267:232-239
pubmed: 28739449
J Control Release. 2017 Sep 28;262:37-46
pubmed: 28694032
Nat Commun. 2017 May 19;8:15322
pubmed: 28524852
J Control Release. 2019 Jun 10;303:1-11
pubmed: 30978431
J Neurosurg. 2010 Aug;113(2):210-7
pubmed: 20001591
Drug Deliv Transl Res. 2020 Jun;10(3):572-581
pubmed: 32323162
Drug Dev Ind Pharm. 2009 Nov;35(11):1375-83
pubmed: 19832638
Brain Res. 2005 Feb 28;1035(2):139-53
pubmed: 15722054
Cell Mol Neurobiol. 2000 Apr;20(2):217-30
pubmed: 10696511
Front Oncol. 2014 Jul 21;4:126
pubmed: 25101239
Small. 2016 Feb 3;12(5):678-85
pubmed: 26680637
Crit Care Med. 2011 Mar;39(3):554-9
pubmed: 21242790
J Control Release. 2021 Sep 10;337:296-305
pubmed: 34298055
Curr Opin Biomed Eng. 2017 Dec;4:1-12
pubmed: 29333521
Nat Rev Neurosci. 2019 Aug;20(8):451-465
pubmed: 31263252
J Control Release. 1999 Feb 1;57(2):171-85
pubmed: 9971898
J Neurosurg. 2017 Jan;126(1):191-200
pubmed: 27035164
Biomaterials. 2018 Sep;178:193-203
pubmed: 29936153
Biomaterials. 2009 Apr;30(12):2302-18
pubmed: 19168213
J Control Release. 2017 Oct 10;263:112-119
pubmed: 28279797
RSC Adv. 2020 Jan 27;10(8):4218-4231
pubmed: 35495261
Brain Res. 2007 Nov 14;1180:121-32
pubmed: 17920047
Brain Pathol. 2009 Oct;19(4):573-85
pubmed: 18662234
Front Pharmacol. 2016 Jun 28;7:185
pubmed: 27445821
J Neurooncol. 2013 Feb;111(3):229-36
pubmed: 23224713

Auteurs

Karina Negron (K)

Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

Gijung Kwak (G)

Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.

Heng Wang (H)

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Haolin Li (H)

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Yi-Ting Huang (YT)

Department of Neuroscience and Behavioral Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.

Shun-Wen Chen (SW)

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Betty Tyler (B)

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.

Charles G Eberhart (CG)

Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Department of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.

Justin Hanes (J)

Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Jung Soo Suk (JS)

Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH