A Highly Translatable Dual-arm Local Delivery Strategy To Achieve Widespread Therapeutic Coverage in Healthy and Tumor-bearing Brain Tissues.
brain extracellular space
drug delivery nanoparticles
extracellular matrix (ECM) modulation
infusate osmolality
local infusion
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
revised:
17
12
2022
received:
23
11
2022
pmc-release:
01
03
2024
pubmed:
19
1
2023
medline:
17
3
2023
entrez:
18
1
2023
Statut:
ppublish
Résumé
Drug delivery nanoparticles (NPs) based entirely on materials generally recognized as safe that provide widespread parenchymal distribution following intracranial administration via convection-enhanced delivery (CED) are introduced. Poly(lactic-co-glycolic acid) (PLGA) NPs are coated with various poloxamers, including F68, F98, or F127, via physical adsorption to render particle surfaces non-adhesive, thereby resisting interactions with brain extracellular matrix. F127-coated PLGA (F127/PLGA) NPs provide markedly greater distribution in healthy rat brains compared to uncoated NPs and widespread coverage in orthotopically-established brain tumors. Distribution analysis of variously-sized F127/PLGA NPs determines the average rat brain tissue porosity to be between 135 and 170 nm while revealing unprecedented brain coverage of larger F127/PLGA NPs with an aid of hydraulic pressure provided by CED. Importantly, F127/PLGA NPs can be lyophilized for long-term storage without compromising their ability to penetrate the brain tissue. Further, 65- and 200-nm F127/PLGA NPs lyophilized-reconstituted and administered in a moderately hyperosmolar infusate solution show further enhance particle dissemination in the brain via osmotically-driven enlargement of the brain tissue porosity. Combination of F127/PLGA NPs and osmotic tissue modulation provides a means with a clear regulatory path to maximize the brain distribution of large NPs that enable greater drug loading and prolong drug release.
Identifiants
pubmed: 36651002
doi: 10.1002/smll.202207278
pmc: PMC10082594
mid: NIHMS1875533
doi:
Substances chimiques
Polylactic Acid-Polyglycolic Acid Copolymer
1SIA8062RS
Polyglycolic Acid
26009-03-0
Lactic Acid
33X04XA5AT
Drug Carriers
0
UCON 50-HB-5100
9038-95-3
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2207278Subventions
Organisme : NEI NIH HHS
ID : P30 EY001765
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS119609
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB030409
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS111102
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA204968
Pays : United States
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
Sci Rep. 2020 Apr 24;10(1):6952
pubmed: 32332821
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11751-6
pubmed: 23818631
Neurosurgery. 2010 Mar;66(3):530-7; discussion 537
pubmed: 20173548
Curr Nanosci. 2018 Oct;14(5):448-453
pubmed: 30532669
Results Pharma Sci. 2012;2:79-85
pubmed: 23316451
J Physiol. 2002 Jul 15;542(Pt 2):515-27
pubmed: 12122149
ACS Nano. 2014 Oct 28;8(10):10655-64
pubmed: 25259648
Int J Pharm. 2009 Jun 5;374(1-2):90-5
pubmed: 19446764
J Control Release. 2022 Apr;344:225-234
pubmed: 35296406
Sci Transl Med. 2012 Aug 29;4(149):149ra119
pubmed: 22932224
Biomaterials. 2016 Oct;105:136-144
pubmed: 27521616
Exp Neurol. 2006 Dec;202(2):497-505
pubmed: 16962582
Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8306-11
pubmed: 10890922
J Neurosurg. 2010 Aug;113(2):301-9
pubmed: 20020841
Mol Pharm. 2013 May 6;10(5):1492-504
pubmed: 23298378
J Control Release. 2017 Dec 10;267:232-239
pubmed: 28739449
J Control Release. 2017 Sep 28;262:37-46
pubmed: 28694032
Nat Commun. 2017 May 19;8:15322
pubmed: 28524852
J Control Release. 2019 Jun 10;303:1-11
pubmed: 30978431
J Neurosurg. 2010 Aug;113(2):210-7
pubmed: 20001591
Drug Deliv Transl Res. 2020 Jun;10(3):572-581
pubmed: 32323162
Drug Dev Ind Pharm. 2009 Nov;35(11):1375-83
pubmed: 19832638
Brain Res. 2005 Feb 28;1035(2):139-53
pubmed: 15722054
Cell Mol Neurobiol. 2000 Apr;20(2):217-30
pubmed: 10696511
Front Oncol. 2014 Jul 21;4:126
pubmed: 25101239
Small. 2016 Feb 3;12(5):678-85
pubmed: 26680637
Crit Care Med. 2011 Mar;39(3):554-9
pubmed: 21242790
J Control Release. 2021 Sep 10;337:296-305
pubmed: 34298055
Curr Opin Biomed Eng. 2017 Dec;4:1-12
pubmed: 29333521
Nat Rev Neurosci. 2019 Aug;20(8):451-465
pubmed: 31263252
J Control Release. 1999 Feb 1;57(2):171-85
pubmed: 9971898
J Neurosurg. 2017 Jan;126(1):191-200
pubmed: 27035164
Biomaterials. 2018 Sep;178:193-203
pubmed: 29936153
Biomaterials. 2009 Apr;30(12):2302-18
pubmed: 19168213
J Control Release. 2017 Oct 10;263:112-119
pubmed: 28279797
RSC Adv. 2020 Jan 27;10(8):4218-4231
pubmed: 35495261
Brain Res. 2007 Nov 14;1180:121-32
pubmed: 17920047
Brain Pathol. 2009 Oct;19(4):573-85
pubmed: 18662234
Front Pharmacol. 2016 Jun 28;7:185
pubmed: 27445821
J Neurooncol. 2013 Feb;111(3):229-36
pubmed: 23224713