FinnGen provides genetic insights from a well-phenotyped isolated population.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
10
01
2022
accepted:
21
10
2022
entrez:
18
1
2023
pubmed:
19
1
2023
medline:
21
1
2023
Statut:
ppublish
Résumé
Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored
Identifiants
pubmed: 36653562
doi: 10.1038/s41586-022-05473-8
pii: 10.1038/s41586-022-05473-8
pmc: PMC9849126
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
508-518Commentaires et corrections
Type : CommentIn
Type : ErratumIn
Informations de copyright
© 2023. The Author(s).
Références
Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).
pubmed: 25078778
pmcid: 4117444
doi: 10.1371/journal.pgen.1004494
Xue, Y. et al. Enrichment of low-frequency functional variants revealed by whole-genome sequencing of multiple isolated European populations. Nat. Commun. 8, 15927 (2017).
pubmed: 28643794
pmcid: 5490002
doi: 10.1038/ncomms15927
Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1322563111 (2014).
Norio, R. The Finnish Disease Heritage III: the individual diseases. Hum. Genet. 112, 470–526 (2003).
pubmed: 12627297
doi: 10.1007/s00439-002-0877-1
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
pubmed: 26432245
doi: 10.1038/nature15393
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Kerminen, S. et al. Fine-scale genetic structure in Finland. G3 7, 3459–3468 (2017).
pubmed: 28983069
pmcid: 5633394
doi: 10.1534/g3.117.300217
Ritari, J., Koskela, S., Hyvärinen, K., FinnGen & Partanen, J. HLA-disease association and pleiotropy landscape in over 235,000 Finns. Hum. Immunol. 83, 391–398 (2022).
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7
Kanai, M. et al. Insights from complex trait fine-mapping across diverse populations. Preprint at medRxiv https://doi.org/10.1101/2021.09.03.21262975 (2021).
Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021).
pubmed: 34594039
doi: 10.1038/s41588-021-00931-x
Sun, B. B. et al. Genetic associations of protein-coding variants in human disease. Nature 603, 95–102 (2022).
pubmed: 35197637
pmcid: 8891017
doi: 10.1038/s41586-022-04394-w
Heyne, H. O. et al. Mono- and biallelic effects of on disease at biobank scale. Nature https://doi.org/10.1038/s41586-022-05420-7 (2022).
Patel, K. A. et al. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat. Commun. 8, 888 (2017).
pubmed: 29026101
pmcid: 5638866
doi: 10.1038/s41467-017-00895-9
Norberg, A. et al. Novel variants in Nordic patients referred for genetic testing of telomere-related disorders. Eur. J. Hum. Genet. 26, 858–867 (2018).
pubmed: 29483670
pmcid: 5974393
doi: 10.1038/s41431-018-0112-8
Löf, C. et al. Detection of novel gene variants associated with congenital hypothyroidism in a Finnish patient cohort. Thyroid 26, 1215–1224 (2016).
pubmed: 27373559
pmcid: 5036323
doi: 10.1089/thy.2016.0016
Jiang, X.-C. & Yu, Y. The role of phospholipid transfer protein in the development of atherosclerosis. Curr. Atheroscler. Rep. 23, 9 (2021).
pubmed: 33496859
pmcid: 8006745
doi: 10.1007/s11883-021-00907-6
Teslovich, T. M. et al. Biological, clinical, and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
pubmed: 20686565
pmcid: 3039276
doi: 10.1038/nature09270
van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).
pubmed: 29212778
pmcid: 5805277
doi: 10.1161/CIRCRESAHA.117.312086
Shadrina, A. S. et al. Prioritization of causal genes for coronary artery disease based on cumulative evidence from experimental and in silico studies. Sci. Rep. 10, 10486 (2020).
pubmed: 32591598
pmcid: 7320185
doi: 10.1038/s41598-020-67001-w
Dimitra, A. et al. HHIPL1, a gene at the 14q32 coronary artery disease locus, positively regulates hedgehog signaling and promotes atherosclerosis. Circulation 140, 500–513 (2019).
doi: 10.1161/CIRCULATIONAHA.119.041059
Bindesbøll, C. et al. NBEAL1 controls SREBP2 processing and cholesterol metabolism and is a susceptibility locus for coronary artery disease. Sci. Rep. 10, 4528 (2020).
pubmed: 32161285
pmcid: 7066131
doi: 10.1038/s41598-020-61352-0
Graydon, C. G., Mohideen, S. & Fowke, K. R. LAG3’s enigmatic mechanism of action. Front. Immunol. https://doi.org/10.3389/fimmu.2020.615317 (2021).
FDA approves anti-LAG3 checkpoint. Nat. Biotechnol. 40, 625 (2022).
doi: 10.1038/s41587-022-01331-0
Boer, C. G. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 184, 4784–4818.e17 (2021).
pubmed: 34450027
pmcid: 8459317
doi: 10.1016/j.cell.2021.07.038
Sliz, E. et al. Uniting biobank resources reveals novel genetic pathways modulating susceptibility for atopic dermatitis. J. Allergy Clin. Immunol. 149, 1105–1112.e9 (2022).
pubmed: 34454985
doi: 10.1016/j.jaci.2021.07.043
Li, J. et al. Utility of basophil activation test for predicting the outcome of wheezing in children: a pilot study. BMC Immunol. 22, 4 (2021).
pubmed: 33407109
pmcid: 7788708
doi: 10.1186/s12865-020-00395-4
Chakraborti, S., Natarajan, K., Curiel, J., Janke, C. & Liu, J. The emerging role of the tubulin code: from the tubulin molecule to neuronal function and disease. Cytoskeleton 73, 521–550 (2016).
pubmed: 26934450
doi: 10.1002/cm.21290
Sharifinejad, N. et al. Clinical, immunological, and genetic features in 49 patients with ZAP-70 deficiency: a systematic review. Front. Immunol. 11, 831 (2020).
pubmed: 32431715
pmcid: 7214800
doi: 10.3389/fimmu.2020.00831
Mulford, A. J., Wing, C., Dolan, M. E. & Wheeler, H. E. Genetically regulated expression underlies cellular sensitivity to chemotherapy in diverse populations. Hum. Mol. Genet. 30, 305–317 (2021).
pubmed: 33575800
pmcid: 8248963
doi: 10.1093/hmg/ddab029
Mafra, F. et al. Copy number variation analysis reveals additional variants contributing to endometriosis development. J. Assist. Reprod. Genet. 34, 117–124 (2017).
pubmed: 27817035
doi: 10.1007/s10815-016-0822-1
Koskela, J. T. et al. Genetic variant in SPDL1 reveals novel mechanism linking pulmonary fibrosis risk and cancer protection. Preprint at medRxiv https://doi.org/10.1101/2021.05.07.21255988 (2021).
Ruotsalainen, S. E. et al. Inframe insertion and splice site variants in MFGE8 associate with protection against coronary atherosclerosis. Commun. Biol. 5, 802 (2022).
pubmed: 35978133
pmcid: 9385630
doi: 10.1038/s42003-022-03552-0
Rämö, J. T. et al. Genome-wide screen of otosclerosis in population biobanks: 27 loci and shared associations with skeletal structure. Nat. Commun. https://doi.org/10.1038/s41467-022-32936-3 (2023).
Tanigawa, Y. et al. Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma. PLoS Genet. 16, e1008682 (2020).
pubmed: 32369491
pmcid: 7199928
doi: 10.1371/journal.pgen.1008682
Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 47, 589–597 (2015).
pubmed: 25961943
pmcid: 4757735
doi: 10.1038/ng.3300
Ehrhardt, N. et al. Hepatic Tm6sf2 overexpression affects cellular ApoB-trafficking, plasma lipid levels, hepatic steatosis and atherosclerosis. Hum. Mol. Genet. 26, 2719–2731 (2017).
pubmed: 28449094
pmcid: 5886214
doi: 10.1093/hmg/ddx159
Prill, S. et al. The TM6SF2 E167K genetic variant induces lipid biosynthesis and reduces apolipoprotein B secretion in human hepatic 3D spheroids. Sci. Rep. 9, 11585 (2019).
pubmed: 31406127
pmcid: 6690969
doi: 10.1038/s41598-019-47737-w
Pirola, C. J. & Sookoian, S. The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against cardiovascular disease and conferring risk for nonalcoholic fatty liver: a meta-analysis. Hepatology 62, 1742–1756 (2015).
pubmed: 26331730
doi: 10.1002/hep.28142
Buch, S. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 47, 1443–1448 (2015).
pubmed: 26482880
doi: 10.1038/ng.3417
Tang, S. et al. Association of TM6SF2 rs58542926 T/C gene polymorphism with hepatocellular carcinoma: a meta-analysis. BMC Cancer 19, 1128 (2019).
pubmed: 31752753
pmcid: 6868855
doi: 10.1186/s12885-019-6173-4
Kim, D. S. et al. Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apoB-100 particles in Finns. J. Lipid Res. 58, 1471–1481 (2017).
pubmed: 28539357
pmcid: 5496043
doi: 10.1194/jlr.P076034
Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med. 26, 549–557 (2020).
pubmed: 32273609
doi: 10.1038/s41591-020-0800-0
Kiiskinen, T. et al. Genomic prediction of alcohol-related morbidity and mortality. Transl Psychiatry 10, 23 (2020).
pubmed: 32066667
pmcid: 7026428
doi: 10.1038/s41398-019-0676-2
Strausz, S. et al. Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health. Eur. Respir. J. 57, 2003091 (2021).
pubmed: 33243845
doi: 10.1183/13993003.03091-2020
Helkkula, P. et al. ANGPTL8 protein-truncating variant associated with lower serum triglycerides and risk of coronary disease. PLoS Genet. 17, e1009501 (2021).
Rahimov, F. et al. High incidence and regional distribution of cleft palate in Finns are associated with a functional variant in an IRF6 enhancer. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-941741/v1 (2021).
Niemi, M. E. K. et al. Mapping the human genetic architecture of COVID-19. Nature https://doi.org/10.1038/s41586-021-03767-x (2021).
Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).
Broekema, R. V., Bakker, O. B. & Jonkers, I. H. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Open Biol. 10, 190221 (2020).
pubmed: 31937202
pmcid: 7014684
doi: 10.1098/rsob.190221
Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).
pubmed: 28641372
pmcid: 5860371
doi: 10.1093/aje/kwx246
Pärn, K. et al. Genotyping chip data lift-over to reference genome build GRCh38/hg38 V.2. protocols.io https://doi.org/10.17504/protocols.io.nqtddwn (2019).
Palta, P. Genotype imputation workflow v3.0 V.1. protocols.io https://doi.org/10.17504/protocols.io.nmndc5e (2018).
Zhou, W. et al. Efficiently controlling for case–control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).
pubmed: 30104761
pmcid: 6119127
doi: 10.1038/s41588-018-0184-y
Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Ser. B Stat. Methodol. 82, 1273–1300 (2020).
doi: 10.1111/rssb.12388
Gagliano Taliun, S. A. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat. Genet. 52, 550–552 (2020).
pubmed: 32504056
pmcid: 7754083
doi: 10.1038/s41588-020-0622-5
Mitt, M. et al. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel. Eur. J. Hum. Genet. 25, 869–876 (2017).
pubmed: 28401899
pmcid: 5520064
doi: 10.1038/ejhg.2017.51
Pan-UK Biobank (Pan UK Biobank Team, 2020); https://pan.ukbb.broadinstitute.org .
Hail v.0.2 (Hail Team, 2019); https://github.com/hail-is/hail .
Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).
pubmed: 27866706
pmcid: 5142122
doi: 10.1016/j.ajhg.2016.10.003
Kerimov, N. et al. A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nat. Genet. 53, 1290–1299 (2021).
pubmed: 34493866
pmcid: 8423625
doi: 10.1038/s41588-021-00924-w
Ochoa, D. et al. Open Targets Platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res. 49, D1302–D1310 (2021).
pubmed: 33196847
doi: 10.1093/nar/gkaa1027
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).
pubmed: 29165669
doi: 10.1093/nar/gkx1153
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
pubmed: 30445434
doi: 10.1093/nar/gky1120