Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7.


Journal

Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575

Informations de publication

Date de publication:
02 2023
Historique:
received: 04 05 2022
accepted: 06 12 2022
pubmed: 20 1 2023
medline: 17 2 2023
entrez: 19 1 2023
Statut: ppublish

Résumé

Coenzyme Q (or ubiquinone) is a redox-active lipid that serves as universal electron carrier in the mitochondrial respiratory chain and antioxidant in the plasma membrane limiting lipid peroxidation and ferroptosis. Mechanisms allowing cellular coenzyme Q distribution after synthesis within mitochondria are not understood. Here we identify the cytosolic lipid transfer protein STARD7 as a critical factor of intracellular coenzyme Q transport and suppressor of ferroptosis. Dual localization of STARD7 to the intermembrane space of mitochondria and the cytosol upon cleavage by the rhomboid protease PARL ensures the synthesis of coenzyme Q in mitochondria and its transport to the plasma membrane. While mitochondrial STARD7 preserves coenzyme Q synthesis, oxidative phosphorylation function and cristae morphogenesis, cytosolic STARD7 is required for the transport of coenzyme Q to the plasma membrane and protects against ferroptosis. A coenzyme Q variant competes with phosphatidylcholine for binding to purified STARD7 in vitro. Overexpression of cytosolic STARD7 increases ferroptotic resistance of the cells, but limits coenzyme Q abundance in mitochondria and respiratory cell growth. Our findings thus demonstrate the need to coordinate coenzyme Q synthesis and cellular distribution by PARL-mediated STARD7 processing and identify PARL and STARD7 as promising targets to interfere with ferroptosis.

Identifiants

pubmed: 36658222
doi: 10.1038/s41556-022-01071-y
pii: 10.1038/s41556-022-01071-y
pmc: PMC9928583
doi:

Substances chimiques

Ubiquinone 1339-63-5
Carrier Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

246-257

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023. The Author(s).

Références

Stefely, J. A. & Pagliarini, D. J. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem. Sci. 42, 824–843 (2017).
pubmed: 28927698 pmcid: 5731490 doi: 10.1016/j.tibs.2017.06.008
Martinez-Reyes, I. et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585, 288–292 (2020).
pubmed: 32641834 pmcid: 7486261 doi: 10.1038/s41586-020-2475-6
Jonassen, T., Larsen, P. L. & Clarke, C. F. A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc. Natl Acad. Sci. USA 98, 421–426 (2001).
pubmed: 11136229 pmcid: 14601 doi: 10.1073/pnas.98.2.421
Luna-Sanchez, M. et al. CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome. EMBO Mol. Med. 9, 78–95 (2017).
pubmed: 27856619 doi: 10.15252/emmm.201606345
Hernandez-Camacho, J. D. et al. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 9, 44 (2018).
pubmed: 29459830 pmcid: 5807419 doi: 10.3389/fphys.2018.00044
Wang, Y. & Hekimi, S. Understanding ubiquinone. Trends Cell Biol. 26, 367–378 (2016).
pubmed: 26827090 doi: 10.1016/j.tcb.2015.12.007
Fernandez-Del-Rio, L. & Clarke, C. F. Coenzyme Q biosynthesis: an update on the origins of the benzenoid ring and discovery of new ring precursors. Metabolites 11, p385 (2021).
Subramanian, K. et al. Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER–mitochondria contacts. J. Cell Biol. 218, 1353–1369 (2019).
pubmed: 30674579 pmcid: 6446851 doi: 10.1083/jcb.201808044
Banerjee, R., Purhonen, J. & Kallijarvi, J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. FEBS J. (2021). https://doi.org/10.1111/febs.16164
Hidalgo-Gutierrez, A. et al. Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants 10, p520 (2021).
Arias-Mayenco, I. et al. Acute O
pubmed: 29887397 doi: 10.1016/j.cmet.2018.05.009
Pallotti, F. et al. The roles of coenzyme Q in disease: direct and indirect involvement in cellular functions. Int. J. Mol. Sci. 23, p128 (2021).
Barcelos, I. P. & Haas, R. H. CoQ10 and aging. Biology 8, p28 (2019).
Montini, G., Malaventura, C. & Salviati, L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N. Engl. J. Med 358, 2849–2850 (2008).
pubmed: 18579827 doi: 10.1056/NEJMc0800582
Doimo, M. et al. Genetics of coenzyme q10 deficiency. Mol. Syndromol. 5, 156–162 (2014).
pubmed: 25126048 pmcid: 4112527 doi: 10.1159/000362826
Kuhl, I. et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 6, e30952 (2017).
pubmed: 29132502 pmcid: 5703644 doi: 10.7554/eLife.30952
Mourier, A. et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J. Cell Biol. 208, 429–442 (2015).
pubmed: 25688136 pmcid: 4332246 doi: 10.1083/jcb.201411100
Veling, M. T. et al. Multi-omic mitoprotease profiling defines a role for Oct1p in coenzyme Q production. Mol. Cell 68, 970–977 e11 (2017).
pubmed: 29220658 pmcid: 5730362 doi: 10.1016/j.molcel.2017.11.023
Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).
pubmed: 31634900 pmcid: 6883167 doi: 10.1038/s41586-019-1705-2
Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).
pubmed: 31634899 doi: 10.1038/s41586-019-1707-0
Kemmerer, Z. A. et al. UbiB proteins regulate cellular CoQ distribution in Saccharomyces cerevisiae. Nat. Commun. 12, 4769 (2021).
pubmed: 34362905 pmcid: 8346625 doi: 10.1038/s41467-021-25084-7
Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).
pubmed: 33495651 pmcid: 8142022 doi: 10.1038/s41580-020-00324-8
Su, Y. et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 483, 127–136 (2020).
pubmed: 32067993 doi: 10.1016/j.canlet.2020.02.015
Hirschhorn, T. & Stockwell, B. R. The development of the concept of ferroptosis. Free Radic. Biol. Med 133, 130–143 (2019).
pubmed: 30268886 doi: 10.1016/j.freeradbiomed.2018.09.043
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).
pubmed: 22632970 pmcid: 3367386 doi: 10.1016/j.cell.2012.03.042
Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).
pubmed: 33981038 pmcid: 8895686 doi: 10.1038/s41586-021-03539-7
Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).
pubmed: 28985560 pmcid: 5685180 doi: 10.1016/j.cell.2017.09.021
Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).
pubmed: 28678785 pmcid: 5667900 doi: 10.1038/nature23007
Gan, B. Mitochondrial regulation of ferroptosis. J. Cell Biol. 220, e202105043 (2021).
Spinazzi, M. et al. PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc. Natl Acad. Sci. USA 116, 277–286 (2019).
pubmed: 30578322 doi: 10.1073/pnas.1811938116
Deshwal, S., Fiedler, K. U. & Langer, T. Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity. Annu. Rev. Biochem. 89, 501–528 (2020).
pubmed: 32075415 doi: 10.1146/annurev-biochem-062917-012739
Saita, S. et al. PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat. Cell Biol. 19, 318–328 (2017).
pubmed: 28288130 doi: 10.1038/ncb3488
Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).
pubmed: 25611507 pmcid: 4764997 doi: 10.1016/j.neuron.2014.12.007
Corbett, M. A. et al. Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat. Commun. 10, 4920 (2019).
pubmed: 31664034 pmcid: 6820779 doi: 10.1038/s41467-019-12671-y
Lu, W. et al. Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson’s-like movement disorder. Nat. Commun. 5, 4930 (2014).
pubmed: 25222142 doi: 10.1038/ncomms5930
Ghezzi, D. et al. Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat. Genet 43, 259–263 (2011).
pubmed: 21278747 doi: 10.1038/ng.761
Meissner, C. et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117, 856–867 (2011).
pubmed: 21426348 doi: 10.1111/j.1471-4159.2011.07253.x
Jin, S. M. et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942 (2010).
pubmed: 21115803 pmcid: 2995166 doi: 10.1083/jcb.201008084
Bottani, E. et al. TTC19 plays a husbandry role on UQCRFS1 turnover in the biogenesis of mitochondrial respiratory complex III. Mol. Cell 67, 96–105 e4 (2017).
pubmed: 28673544 doi: 10.1016/j.molcel.2017.06.001
Saita, S. et al. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J. 37, e97909 (2018).
Bockelmann, S. et al. A search for ceramide binding proteins using bifunctional lipid analogs yields CERT-related protein StarD7. J. Lipid Res. 59, 515–530 (2018).
pubmed: 29343537 pmcid: 5832928 doi: 10.1194/jlr.M082354
Tsui, H. S. et al. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J. Lipid Res. 60, 1293–1310 (2019).
pubmed: 31048406 pmcid: 6602128 doi: 10.1194/jlr.M093534
Alam, S. S., Nambudiri, A. M. & Rudney, H. J-Hydroxybenzoate: polyprenyl transferase and the prenylation of 4-aminobenzoate in mammalian tissues. Arch. Biochem. Biophys. 171, 183–190 (1975).
pubmed: 1103740 doi: 10.1016/0003-9861(75)90022-3
Takahashi, T. et al. Distribution of ubiquinone and ubiquinol homologues in rat tissues and subcellular fractions. Lipids 28, 803–809 (1993).
pubmed: 8231656 doi: 10.1007/BF02536234
Horibata, Y. & Sugimoto, H. StarD7 mediates the intracellular trafficking of phosphatidylcholine to mitochondria. J. Biol. Chem. 285, 7358–7365 (2010).
pubmed: 20042613 doi: 10.1074/jbc.M109.056960
Cui, T. Z. & Kawamukai, M. Coq10, a mitochondrial coenzyme Q binding protein, is required for proper respiration in Schizosaccharomyces pombe. FEBS J. 276, 748–759 (2009).
pubmed: 19120452 doi: 10.1111/j.1742-4658.2008.06821.x
Barros, M. H. et al. The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. J. Biol. Chem. 280, 42627–42635 (2005).
pubmed: 16230336 doi: 10.1074/jbc.M510768200
Allan, C. M. et al. A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1831, 776–791 (2013).
pubmed: 23270816 doi: 10.1016/j.bbalip.2012.12.007
James, A. M. et al. Complementation of coenzyme Q-deficient yeast by coenzyme Q analogues requires the isoprenoid side chain. FEBS J. 277, 2067–2082 (2010).
pubmed: 20345901 doi: 10.1111/j.1742-4658.2010.07622.x
Fernandez-Del-Rio, L. et al. Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae. Free Radic. Biol. Med 154, 105–118 (2020).
pubmed: 32387128 pmcid: 7611304 doi: 10.1016/j.freeradbiomed.2020.04.029
Ahola, S. et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab. 34, 1875–91. (2022).
pubmed: 36113464 doi: 10.1016/j.cmet.2022.08.017
Yubero, D. et al. Secondary coenzyme Q10 deficiencies in oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders. Mitochondrion 30, 51–58 (2016).
pubmed: 27374853 doi: 10.1016/j.mito.2016.06.007
Rees, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116 (2016).
pubmed: 26656090 doi: 10.1038/nchembio.1986
Demichev, V. et al. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
pubmed: 31768060 doi: 10.1038/s41592-019-0638-x
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 13, 2513–2526 (2014).
doi: 10.1074/mcp.M113.031591
Nolte, H. et al. Instant Clue: a software suite for interactive data visualization and analysis. Sci. Rep. 8, 12648 (2018).
pubmed: 30140043 pmcid: 6107636 doi: 10.1038/s41598-018-31154-6

Auteurs

Soni Deshwal (S)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Mashun Onishi (M)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Takashi Tatsuta (T)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Tim Bartsch (T)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Eileen Cors (E)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Katharina Ried (K)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Kathrin Lemke (K)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Hendrik Nolte (H)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Patrick Giavalisco (P)

Max Planck Institute for Biology of Ageing, Cologne, Germany.

Thomas Langer (T)

Max Planck Institute for Biology of Ageing, Cologne, Germany. tlanger@age.mpg.de.
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. tlanger@age.mpg.de.

Articles similaires

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia.

Lisa Demoen, Filip Matthijssens, Lindy Reunes et al.
1.00
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Animals Mice Humans Cell Line, Tumor
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Animals Humans Sarcomeres Muscle Proteins Carrier Proteins

Classifications MeSH