Asymmetry and Ion Selectivity Properties of Bacterial Channel NaK Mutants Derived from Ionotropic Glutamate Receptors.


Journal

Journal of molecular biology
ISSN: 1089-8638
Titre abrégé: J Mol Biol
Pays: Netherlands
ID NLM: 2985088R

Informations de publication

Date de publication:
15 03 2023
Historique:
received: 28 09 2022
revised: 17 12 2022
accepted: 12 01 2023
pubmed: 23 1 2023
medline: 7 3 2023
entrez: 22 1 2023
Statut: ppublish

Résumé

Ionotropic glutamate receptors are ligand-gated cation channels that play essential roles in the excitatory synaptic transmission throughout the central nervous system. A number of open-pore structures of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid (AMPA)-type glutamate receptors became available recently by cryo-electron microscopy (cryo-EM). These structures provide valuable insights into the conformation of the selectivity filter (SF), the part of the ion channel that determines the ion selectivity. Nonetheless, due to the moderate resolution of the cryo-EM structures, detailed information such as ion occupancy of monovalent and divalent cations as well as positioning of the side-chains in the SF is still missing. Here, in an attempt to obtain high-resolution information about glutamate receptor SFs, we incorporated partial SF sequences of the AMPA and kainate receptors into the bacterial tetrameric cation channel NaK, which served as a structural scaffold. We determined a series of X-ray structures of NaK-CDI, NaK-SDI and NaK-SELM mutants at 1.42-2.10 Å resolution, showing distinct ion occupation of different monovalent cations. Molecular dynamics (MD) simulations of NaK-CDI indicated the channel to be conductive to monovalent cations, which agrees well with our electrophysiology recordings. Moreover, previously unobserved structural asymmetry of the SF was revealed by the X-ray structures and MD simulations, implying its importance in ion non-selectivity of tetrameric cation channels.

Identifiants

pubmed: 36682679
pii: S0022-2836(23)00026-8
doi: 10.1016/j.jmb.2023.167970
pii:
doi:

Substances chimiques

Receptors, AMPA 0
Receptors, Kainic Acid 0
prokaryotic potassium channel 0
Potassium Channels 0
Bacterial Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

167970

Subventions

Organisme : European Research Council
ID : 647895
Pays : International

Informations de copyright

Copyright © 2023 Elsevier Ltd. All rights reserved.

Auteurs

Sonja Minniberger (S)

Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.

Saeid Abdolvand (S)

Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.

Sebastian Braunbeck (S)

Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.

Han Sun (H)

Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institute of Chemistry, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany. Electronic address: hsun@fmp-berlin.de.

Andrew J R Plested (AJR)

Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany. Electronic address: andrew.plested@hu-berlin.de.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents

Classifications MeSH