Complement biology for hematologists.


Journal

American journal of hematology
ISSN: 1096-8652
Titre abrégé: Am J Hematol
Pays: United States
ID NLM: 7610369

Informations de publication

Date de publication:
05 2023
Historique:
revised: 12 01 2023
received: 23 09 2022
accepted: 17 01 2023
medline: 3 4 2023
pubmed: 24 1 2023
entrez: 23 1 2023
Statut: ppublish

Résumé

The complement system is part of the innate immunity. An increased activation or a loss of the regulation of this fine-tuned cascade is involved in a variety of hematological diseases. During the last decade, anti-C5 therapies have revolutionized the management and prognosis of paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic and uremic syndrome (aHUS). The availability of a rapidly growing number of innovative complement inhibitors has opened new therapeutic perspectives for several other hematological disorders in which the complement is involved at different degrees. This review focuses on complement biology and its mechanisms of activation in hematological diseases.

Identifiants

pubmed: 36688486
doi: 10.1002/ajh.26855
doi:

Substances chimiques

Complement System Proteins 9007-36-7
Complement Inactivating Agents 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

S5-S19

Informations de copyright

© 2023 The Authors. American Journal of Hematology published by Wiley Periodicals LLC.

Références

Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I: molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.
Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;6:257.
Kunz N, Kemper C. Complement has brains: do intracellular complement and Immunometabolism cooperate in tissue homeostasis and behavior? Front Immunol. 2021;12:629986.
Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement: their role in inflammation. Semin Immunopathol. 2012;34(1):151-165.
de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol. 2019;16(1):19-27.
Foley JH. Examining coagulation-complement crosstalk: complement activation and thrombosis. Thromb Res. 2016;141:S50-S54.
Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785-797.
Noris M, Galbusera M. The complement alternative pathway and hemostasis. Immunol Rev. 2022;313(1):139-161.
Schmidt CQ, Schrezenmeier H, Kavanagh D. Complement and the prothrombotic state. Blood. 2022;139(13):1954-1972.
Li XX, Lee JD, Kemper C, Woodruff TM. The complement receptor C5aR2: a powerful modulator of innate and adaptive immunity. J Immunol. 2019;202(12):3339-3348.
Lewis LA, Ram S. Meningococcal disease and the complement system. Virulence. 2014;5(1):98-126.
Xie CB, Jane-Wit D, Pober JS. Complement Membrane Attack Complex. Am J Pathol. 2020;190(6):1138-1150.
Meri S, Morgan BP, Davies A, et al. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990;71(1):1-9.
Hadders MA, Bubeck D, Roversi P, et al. Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep. 2012;1(3):200-207.
Fakhouri F, Frémeaux-Bacchi V. Thrombotic microangiopathy in aHUS and beyond: clinical clues from complement genetics. Nat Rev Nephrol. 2021;17(8):543-553.
Colden MA, Kumar S, Munkhbileg B, Babushok DV. Insights into the emergence of paroxysmal nocturnal hemoglobinuria. Front Immunol. 2022;12:830172.
Mastellos DC, Ricklin D, Yancopoulou D, Risitano A, Lambris JD. Complement in paroxysmal nocturnal hemoglobinuria: exploiting our current knowledge to improve the treatment landscape. Expert Rev Hematol. 2014;7(5):583-598.
Brodsky RA, Mukhina GL, Li S, et al. Improved detection and characterization of paroxysmal nocturnal hemoglobinuria using fluorescent Aerolysin. Am J Clin Pathol. 2000;114(3):459-466.
Risitano AM, Rotoli B. Paroxysmal nocturnal hemoglobinuria: pathophysiology, natural history and treatment options in the era of biological agents. Biol Targets Ther. 2008;2(2):205-222.
Risitano AM. Paroxysmal nocturnal hemoglobinuria and other complement-mediated hematological disorders. Immunobiology. 2012;217(11):1080-1087.
Hill A, Hillmen P, Richards SJ, et al. Sustained response and long-term safety of eculizumab in paroxysmal nocturnal hemoglobinuria. Blood. 2005;106(7):2559-2565.
Hillmen P, Hall C, Marsh JCW, et al. Effect of Eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2004;350(6):552-559.
Hillmen P, Young NS, Schubert J, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;355(12):1233-1243.
Notaro R, Luzzatto L. Breakthrough hemolysis in PNH with proximal or terminal complement inhibition. Longo DL, editor. N Engl J Med. 2022;387(2):160-166.
Peffault de Latour R, Brodsky RA, Ortiz S, et al. Pharmacokinetic and pharmacodynamic effects of ravulizumab and eculizumab on complement component 5 in adults with paroxysmal nocturnal haemoglobinuria: results of two phase 3 randomised, multicentre studies. Br J Haematol. 2020;191(3):476-485.
Nishimura J. Ichi, Yamamoto M, Hayashi S, et al. genetic variants in C5 and poor response to Eculizumab. N Engl J Med. 2014;370(7):632-639.
Risitano AM, Notaro R, Marando L, et al. Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood. 2009;113(17):4094-4100.
Hill A, Rother RP, Arnold L, et al. Eculizumab prevents intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria and unmasks low-level extravascular hemolysis occurring through C3 opsonization. Haematologica. 2010;95(4):567-573.
Gurnari C, Nautiyal I, Pagliuca S. Current opinions on the clinical utility of Ravulizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Ther Clin Risk Manag. 2021;17:1343-1351.
Lin Z, Schmidt CQ, Koutsogiannaki S, et al. Complement C3dg-mediated erythrophagocytosis: implications for paroxysmal nocturnal hemoglobinuria. Blood. 2015;126(7):891-894.
Gavriilaki E, de Latour RP, Risitano AM. Advancing therapeutic complement inhibition in hematologic diseases: PNH and beyond. Blood. 2022;139(25):3571-3582.
Risitano AM, Marotta S, Ricci P, et al. Anti-complement treatment for paroxysmal nocturnal hemoglobinuria: time for proximal complement inhibition? A position paper from the SAAWP of the EBMT. Front Immunol. 2019;10:1157.
Fakhouri F, Zuber J, Frémeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. The Lancet. 2017;390(10095):681-696.
Roumenina LT, Jablonski M, Hue C, et al. Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. Blood. 2009;114(13):2837-2845.
Marinozzi MC, Vergoz L, Rybkine T, et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014;25(9):2053-2065.
Valoti E, Alberti M, Tortajada A, et al. A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J Am Soc Nephrol. 2015;26(1):209-219.
Loirat C, Frémeaux-Bacchi V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011;6(1):60.
Ferreira VP, Herbert AP, Cortés C, et al. The binding of factor H to a complex of physiological Polyanions and C3b on cells is impaired in atypical hemolytic uremic syndrome. J Immunol. 2009;182(11):7009-7018.
Roumenina LT, Roquigny R, Blanc C, et al. Functional Evaluation of Factor H genetic and Acquired Abnormalities: Application for Atypical Hemolytic Uremic Syndrome (aHUS). Complement Syst. 2014;1100:237-247.
Sánchez-Corral P, Pérez-Caballero D, Huarte O, et al. Structural and functional characterization of factor H mutations associated with atypical hemolytic uremic syndrome. Am J Hum Genet. 2002;71(6):1285-1295.
Lemaire M, Frémeaux-Bacchi V, Schaefer F, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531-536.
Roumenina LT, Loirat C, Dragon-Durey MA, Halbwachs-Mecarelli L, Sautes-Fridman C, Fremeaux-Bacchi V. Alternative complement pathway assessment in patients with atypical HUS. J Immunol Methods. 2011;365(1-2):8-26.
Dragon-Durey MA, Blanc C, Garnier A, Hofer J, Sethi SK, Zimmerhackl LB. Anti-factor H autoantibody-associated hemolytic uremic syndrome: review of literature of the autoimmune form of HUS. Semin Thromb Hemost. 2010;36(6):633-640.
Martins M, Bridoux F, Goujon JM, et al. Complement activation and thrombotic Microangiopathy associated with monoclonal Gammopathy: a National French Case Series. Am J Kidney Dis. 2022;80(3):341-352.
Aiello S, Gastoldi S, Galbusera M, et al. C5a and C5aR1 are key drivers of microvascular platelet aggregation in clinical entities spanning from aHUS to COVID-19. Blood Adv. 2022;6(3):866-881.
Estrada CC, Cardona S, Guo Y, et al. Endothelial-specific loss of Krüppel-like factor 4 triggers complement-mediated endothelial injury. Kidney Int. 2022;102(1):58-77.
Frimat M, Tabarin F, Dimitrov JD, et al. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood. 2013;122(2):282-292.
Belcher JD, Chen C, Nguyen J, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123(3):377-390.
Clark SJ, Ridge LA, Herbert AP, et al. Tissue-specific host recognition by complement factor H is mediated by differential activities of its glycosaminoglycan-binding regions. J Immunol. 2013;190(5):2049-2057.
Zuber J, Frimat M, Caillard S, et al. Use of highly individualized complement blockade has revolutionized clinical outcomes after kidney transplantation and renal epidemiology of atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2019;30(12):2449-2463.
Fakhouri F, Fila M, Hummel A, et al. Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: a prospective multicenter study. Blood. 2021;137(18):2438-2449.
Le Quintrec M, Zuber J, Moulin B, et al. Complement genes strongly predict recurrence and graft outcome in adult renal transplant recipients with atypical hemolytic and uremic syndrome: genetic complement in renal transplantation. Am J Transplant. 2013;13(3):663-675.
Fremeaux-Bacchi V, Fakhouri F, Garnier A, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a Nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013;8(4):554-562.
Noris M, Caprioli J, Bresin E, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844-1859.
Meri S, Bunjes D, Cofiell R, Jodele S. The role of complement in HSCT-TMA: basic science to clinical practice. Adv Ther. 2022;39(9):3896-3915.
Gavriilaki E, Sakellari I, Batsis I, et al. Transplant-associated thrombotic microangiopathy: incidence, prognostic factors, morbidity, and mortality in allogeneic hematopoietic cell transplantation. Clin Transplant. 2018;32(9):e13371.
Young JA, Pallas CR, Knovich MA. Transplant-associated thrombotic microangiopathy: theoretical considerations and a practical approach to an unrefined diagnosis. Bone Marrow Transplant. 2021;56(8):1805-1817.
Jodele S, Laskin BL, Dandoy CE, et al. A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev. 2015;29(3):191-204.
Willems E, Baron F, Seidel L, Frère P, Fillet G, Beguin Y. Comparison of thrombotic microangiopathy after allogeneic hematopoietic cell transplantation with high-dose or nonmyeloablative conditioning. Bone Marrow Transplant. 2010;45(4):689-693.
Jodele S, Dandoy CE, Lane A, et al. Complement blockade for TA-TMA: lessons learned from large pediatric cohort treated with eculizumab. Blood. 2020;135(13):1049-1057.
Mizuno K, Dandoy CE, Teusink-Cross A, Davies SM, Vinks AA, Jodele S. Eculizumab precision-dosing algorithm for thrombotic microangiopathy in children and young adults undergoing HSCT. Blood Adv. 2022;6(5):1454-1463.
Pruzanski W, Shumak KH. Biologic activity of cold-reacting autoantibodies: (first of two parts). N Engl J Med. 1977;297(10):538-542.
Schreiber AD, Frank MM. Role of antibody and complement in the immune clearance and destruction of erythrocytes: in vivo effects of IgM and IgM complement-fixing sites. J Clin Invest. 1972;51(3):575-582.
Berentsen S. Role of complement in autoimmune hemolytic anemia. Transfus Med Hemotherapy. 2015;42(5):303-310.
Zanella A, Barcellini W. Treatment of autoimmune hemolytic anemias. Haematologica. 2014;99(10):1547-1554.
Berentsen S, Barcellini W, D'Sa S, Jilma B. Sutimlimab for treatment of cold agglutinin disease: why, how and for whom? Immunotherapy. 2022;14(15):1191-1204.
Ecw DB, Jalink M, Delvasto-Nuñes L, et al. P1530: Peritranfusional C1-inhibitor in patients with severe complement-mediated autoimmune hemolytic anemia: an open label phase 2 trial. Hema. 2022;6:1411-1412.
Röth A, Hüttmann A, Rother RP, Dührsen U, Philipp T. Long-term efficacy of the complement inhibitor eculizumab in cold agglutinin disease. Blood. 2009;113(16):3885-3886.
Wouters D, Stephan F, Strengers P, et al. C1-esterase inhibitor concentrate rescues erythrocytes from complement-mediated destruction in autoimmune hemolytic anemia. Blood. 2013;121(7):1242-1244.
Tesfaye A, Broome C. A novel approach for treatment of cold agglutinin syndrome-related severe hemolysis. J Hematol. 2016;5(1):30-33.
Röth A, Barcellini W, D'Sa S, et al. Sutimlimab in cold agglutinin disease. N Engl J Med. 2021;384(14):1323-1334.
Röth A, Bommer M, Hüttmann A, et al. Eculizumab in cold agglutinin disease (DECADE): an open-label, prospective, bicentric, nonrandomized phase 2 trial. Blood Adv. 2018;2(19):2543-2549.
Merle NS, Boudhabhay I, Leon J, Fremeaux-Bacchi V, Roumenina LT. Complement activation during intravascular hemolysis: implication for sickle cell disease and hemolytic transfusion reactions. Transfus Clin Biol. 2019;26(2):116-124.
Chaturvedi S, Braunstein EM, Yuan X, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135(4):239-251.
Blasco M, Guillén E, Quintana LF, et al. Thrombotic microangiopathies assessment: mind the complement. Clin Kidney J. 2021;14(4):1055-1066.
Sun S, Urbanus RT, ten Cate H, et al. Platelet activation mechanisms and consequences of immune thrombocytopenia. Cell. 2021;10(12):3386.
Roumenina LT, Chadebech P, Bodivit G, et al. Complement activation in sickle cell disease: dependence on cell density, hemolysis and modulation by hydroxyurea therapy. Am J Hematol. 2020;95(5):456-464.
Gavriilaki E, Mainou M, Christodoulou I, et al. In vitro evidence of complement activation in patients with sickle cell disease. Haematologica. 2017;102(12):e481-e482.
Jindal N, Jandial A, Jain A, et al. Carfilzomib-induced thrombotic microangiopathy: a case based review. Hematol Oncol Stem Cell Ther. 2020;S1658-3876(20)30118-7.
Blasco M, Martínez-Roca A, Rodríguez-Lobato LG, et al. Complement as the enabler of carfilzomib-induced thrombotic microangiopathy. Br J Haematol. 2021;193(1):181-187.
Chaturvedi S, Brodsky RA, McCrae KR. Complement in the pathophysiology of the antiphospholipid syndrome. Front Immunol. 2019;10:449.
Bećarević M. Antibodies against complement components: relevance for the antiphospholipid syndrome-biomarkers of the disease and biopharmaceuticals. Curr Rheumatol Rep. 2017;19(7):40.
Chaturvedi S, Braunstein EM, Brodsky RA. Antiphospholipid syndrome: complement activation, complement gene mutations, and therapeutic implications. J Thromb Haemost. 2021;19(3):607-616.
Breen KA, Seed P, Parmar K, Moore GW, Stuart-Smith SE, Hunt BJ. Complement activation in patients with isolated antiphospholipid antibodies or primary antiphospholipid syndrome. Thromb Haemost. 2012;107(3):423-429.
Oku K, Atsumi T, Bohgaki M, et al. Complement activation in patients with primary antiphospholipid syndrome. Ann Rheum Dis. 2009;68(6):1030-1035.
Kello N, Khoury LE, Marder G, Furie R, Zapantis E, Horowitz DL. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: case series and review of literature. Semin Arthritis Rheum. 2019;49(1):74-83.
Meroni PL, Macor P, Durigutto P, et al. Complement activation in antiphospholipid syndrome and its inhibition to prevent rethrombosis after arterial surgery. Blood. 2016;127(3):365-367.
Shapira I, Andrade D, Allen SL, Salmon JE. Brief report: induction of sustained remission in recurrent catastrophic antiphospholipid syndrome via inhibition of terminal complement with eculizumab. Arthritis Rheum. 2012;64(8):2719-2723.
Wig S, Chan M, Thachil J, Bruce I, Barnes T. A case of relapsing and refractory catastrophic anti-phospholipid syndrome successfully managed with eculizumab, a complement 5 inhibitor. Rheumatology. 2016;55(2):382-384.
Zikos TA, Sokolove J, Ahuja N, Berube C. Eculizumab induces sustained remission in a patient with refractory primary catastrophic antiphospholipid syndrome. J Clin Rheumatol. 2015;21(6):311-313.
Strakhan M, Hurtado-Sbordoni M, Galeas N, Bakirhan K, Alexis K, Elrafei T. 36-year-old female with catastrophic antiphospholipid syndrome treated with Eculizumab: a case report and review of literature. Case Rep Hematol. 2014;2014:1-7.
Rovere-Querini P, Canti V, Erra R, et al. Eculizumab in a pregnant patient with laboratory onset of catastrophic antiphospholipid syndrome: a case report. Medicine (Baltimore). 2018;97(40):e12584.
Geethakumari PR, Mille P, Gulati R, Nagalla S. Complement inhibition with eculizumab for thrombotic microangiopathy rescues a living-donor kidney transplant in a patient with antiphospholipid antibody syndrome. Transfus Apher Sci. 2017;56(3):400-403.
Gustavsen A, Skattum L, Bergseth G, et al. Effect on mother and child of eculizumab given before caesarean section in a patient with severe antiphospholipid syndrome: a case report. Medicine (Baltimore). 2017;96(11):e6338.
Kronbichler A, Frank R, Kirschfink M, et al. Efficacy of Eculizumab in a patient with Immunoadsorption-dependent catastrophic antiphospholipid syndrome: a case report. Medicine (Baltimore). 2014;93(26):e143.
Lonze BE, Zachary AA, Magro CM, et al. Eculizumab prevents recurrent antiphospholipid antibody syndrome and enables successful renal transplantation: Eculizumab and renal transplantation in APS. Am J Transplant. 2014;14(2):459-465.
Hussain H, Tarantino MD. Chaturvedi S, et al Eculizumab for refractory thrombosis in antiphospholipid syndrome. Blood Adv. 2022;6(4):1271-1277.
Nauseef JT, Lim HI, DeSancho MT. Successful outcome with eculizumab treatment in a patient with antiphospholipid syndrome presenting with an unusual thrombotic storm. J Thromb Thrombolysis. 2021;52(2):597-600.
Johnsen J. Pathogenesis in immune thrombocytopenia: new insights. Hematol Am Soc Hematol Educ Program. 2012;2012:306-312.
Peerschke EIB, Panicker S, Bussel J. Classical complement pathway activation in immune thrombocytopenia purpura: inhibition by a novel C1s inhibitor. Br J Haematol. 2016;173(6):942-945.
Peerschke EIB, Andemariam B, Yin W, Bussel JB. Complement activation on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura. Br J Haematol. 2010;148(4):638-645.
Cheloff AZ, Kuter DJ, Al-Samkari H. Serum complement levels in immune thrombocytopenia: characterization and relation to clinical features. Res Pract Thromb Haemost. 2020;4(5):807-812.
Turner N, Sartain S, Moake J. Ultralarge von Willebrand factor-induced platelet clumping and activation of the alternative complement pathway in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndromes. Hematol Oncol Clin North Am. 2015;29(3):509-524.
Réti M, Farkas P, Csuka D, Rázsó K, et al. Complement activation in thrombotic thrombocytopenic purpura: complement activation in TTP. J Thromb Haemost. 2012;10(5):791-798.
Sasapu A, Cottler-Fox M, Motwani P. Acquired thrombotic thrombocytopenic purpura and atypical hemolytic uremic syndrome successfully treated with eculizumab. Proc Bayl Univ Med Cent. 2017;30(2):182-183.
Chapin J, Weksler B, Magro C, Laurence J. Eculizumab in the treatment of refractory idiopathic thrombotic thrombocytopenic purpura. Br J Haematol. 2012;157(6):772-774.
Tsai E, Chapin J, Laurence JC, Tsai HM. Use of eculizumab in the treatment of a case of refractory, ADAMTS13-deficient thrombotic thrombocytopenic purpura: additional data and clinical follow-up. Br J Haematol. 2013;162(4):558-559.
Vigna E, Petrungaro A, Perri A, et al. Efficacy of eculizumab in severe ADAMTS13-deficient thrombotic thrombocytopenic purpura (TTP) refractory to standard therapies. Transfus Apher Sci. 2018;57(2):247-249.
Bitzan M, Hammad RM, Bonnefoy A, al Dhaheri WS, Vézina C, Rivard GÉ. Acquired thrombotic thrombocytopenic purpura with isolated CFHR3/1 deletion: rapid remission following complement blockade. Pediatr Nephrol. 2018;33(8):1437-1442.
Pecoraro C, Ferretti AVS, Rurali E, Galbusera M, Noris M, Remuzzi G. Treatment of congenital thrombotic thrombocytopenic purpura with Eculizumab. Am J Kidney Dis off J Natl Kidney Found. 2015;66(6):1067-1070.
Malik F, Ali N, Ahsan I, Ghani AR, Fidler C. Eculizumab refractory thrombotic thrombocytopenic purpura secondary to post-endoscopic retrograde cholangiopancreatography pancreatitis in a patient. J Community Hosp Intern Med Perspect. 2016;6(6):32310.
Vaught AJ, Braunstein E, Chaturvedi S, Blakemore K, Brodsky RA. A review of the alternative pathway of complement and its relation to HELLP syndrome: is it time to consider HELLP syndrome a disease of the alternative pathway. J Matern-Fetal Neonatal Med. 2022;35(7):1392-1400.
Fakhouri F, Scully M, Ardissino G, al-Dakkak I, Miller B, Rondeau E. Pregnancy-triggered atypical hemolytic uremic syndrome (aHUS): a global aHUS registry analysis. J Nephrol. 2021;34(5):1581-1590.
Bazzan M, Todros T, Tedeschi S, et al. Genetic and molecular evidence for complement dysregulation in patients with HELLP syndrome. Thromb Res. 2020;196:167-174.
Chen S, Li Z, He Y, Chen Q. Dysregulation of complement system in HELLP syndrome. Hypertens Pregnancy. 2021;40(4):303-311.
Burwick RM, Feinberg BB. Complement activation and regulation in preeclampsia and hemolysis, elevated liver enzymes, and low platelet count syndrome. Am J Obstet Gynecol. 2022;226(2 S):S1059-S1070.
Palomo M, Blasco M, Molina P, et al. Complement activation and thrombotic Microangiopathies. Clin J Am Soc Nephrol. 2019;14(12):1719-1732.
Lokki AI, Haapio M, Heikkinen-Eloranta J. Eculizumab treatment for postpartum HELLP syndrome and aHUS-case report. Front Immunol. 2020;11:548.
Elabd H, Elkholi M, Steinberg L, Acharya A. Eculizumab, a novel potential treatment for acute kidney injury associated with preeclampsia/HELLP syndrome. BMJ Case Rep. 2019;12(9):e228709.
Artinger K, Hackl G, Schilcher G, et al. The conundrum of postpartum thrombotic Microangiopathy: case report and considerations for management. BMC Nephrol. 2019;20(1):91.
Burwick RM, Feinberg BB. Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta. 2013;34(2):201-203.
Kozlovskaya NL, Korotchaeva YV, Bobrova LA. Adverse outcomes in obstetric-atypical haemolytic uraemic syndrome: a case series analysis. J Matern-Fetal Neonatal Med. 2019;32(17):2853-2859.
Eigbire-Molen O, Hermelin D, Blackall D. Carfilzomib-induced thrombotic Microangiopathy: focus on pathogenesis. J Med Cases. 2022;13(6):274-280.
Gavriilaki E, Dalampira D, Theodorakakou F, et al. Genetic and functional evidence of complement dysregulation in multiple myeloma patients with carfilzomib-induced thrombotic Microangiopathy compared to controls. J Clin Med. 2022;11(12):3355.
Casiez C, Pica GM, Bally S. Carfilzomib-induced haemolytic and uremic syndrome: favorable outcome with eculizumab. Nephrol Ther. 2020;16(4):221-224.
Darwin A, Malpica L, Dhanoa J, Hashmi H. Carfilzomib-induced atypical haemolytic uraemic syndrome: a diagnostic challenge and therapeutic success. BMJ Case Rep. 2021;14(2):e239091.
Bhutani D, Assal A, Mapara MY, Prinzing S, Lentzsch S. Case report: carfilzomib-induced thrombotic Microangiopathy with complement activation treated successfully with Eculizumab. Clin Lymphoma Myeloma Leuk. 2020;20(4):e155-e157.
Terao T, Tsushima T, Miura D, et al. Carfilzomib-induced thrombotic microangiopathy is underestimated in clinical practice: a report of five patients and literature review. Leuk Lymphoma. 2022;63(5):1102-1110.
Rassner M, Baur R, Wäsch R, et al. Two cases of carfilzomib-induced thrombotic microangiopathy successfully treated with Eculizumab in multiple myeloma. BMC Nephrol. 2021;22(1):32.
Moliz C, Gutiérrez E, Cavero T, Redondo B, Praga M. Eculizumab as a treatment for atypical hemolytic syndrome secondary to carfilzomib. Nefrologia. 2019;39(1):86-88.
Patel I, Odak M, Douedi S, et al. Eculizumab as a treatment for hyper-Haemolytic and aplastic crisis in sickle cell disease. Eur J Case Rep Intern Med. 2021;8(10):002824.
Chonat S, Chandrakasan S, Kalinyak KA, Ingala D, Gruppo R, Kalfa TA. Atypical haemolytic uraemic syndrome in a patient with sickle cell disease, successfully treated with eculizumab. Br J Haematol. 2016;175(4):744-747.
Boonyasampant M, Weitz IC, Kay B, Boonchalermvichian C, Liebman HA, Shulman IA. Life-threatening delayed hyperhemolytic transfusion reaction in a patient with sickle cell disease: effective treatment with eculizumab followed by rituximab. Transfusion (Paris). 2015;55(10):2398-2403.
Dumas G, Habibi A, Onimus T, et al. Eculizumab salvage therapy for delayed hemolysis transfusion reaction in sickle cell disease patients. Blood. 2016;127(8):1062-1064.
Vlachaki E, Gavriilaki E, Kafantari K, et al. Successful outcome of Hyperhemolysis in sickle cell disease following multiple lines of treatment: the role of complement inhibition. Hemoglobin. 2018;42(5-6):339-341.
Bhunia N, Abu-Arja R, Bajwa RPS, Auletta JJ, Rangarajan HG. Successful treatment with eculizumab for posterior reversible encephalopathy syndrome due to underlying transplant-associated thrombotic microangiopathy in patients transplanted for sickle cell disease. Pediatr Blood Cancer. 2019;66(10):e27912.
Obaid JMAS, Abo El-Nazar SY, Ghanem AM, et al. Expression of CD55 on red blood cells of β-thalassemia patients. Hemoglobin. 2014;38(5):339-344.
Gavriilaki E, Christodoulou I, Koravou EE, et al. Pre- and post-transfusion complement activation in transfusion-dependent β-thalassaemia. HemaSphere. 2018;2(5):e58.
Arinsburg SA, Skerrett DL, Kleinert D, Giardina PJ, Cushing MM. The significance of a positive DAT in thalassemia patients. Immunohematology. 2010;26(3):87-91.
Ward PA. Role of C5 activation products in sepsis. Sci World J. 2010;10:2395-2402.
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol. 2014;258:35-47.
Abe T, Sasaki A, Ueda T, Miyakawa Y, Ochiai H. Complement-mediated thrombotic microangiopathy secondary to sepsis-induced disseminated intravascular coagulation successfully treated with eculizumab: a case report. Medicine (Baltimore). 2017;96(6):e6056.
Galic S, Csuka D, Prohászka Z, Turudic D, Dzepina P, Milosevic D. A case report of a child with sepsis induced multiorgan failure and massive complement consumption treated with a short course of Eculizumab: a case of crosstalk between coagulation and complement? Medicine (Baltimore). 2019;98(4):e14105.
Panch SR, Montemayor-Garcia C, Klein HG. Hemolytic transfusion reactions. Longo DL, editor. N Engl J Med. 2019;381(2):150-162.
Mpinganzima C, Haaland A, Holm AGV, Thein SL, Tjønnfjord GE, Iversen PO. Two consecutive episodes of severe delayed hemolytic transfusion reaction in a sickle cell disease patient. Case Rep Hematol. 2020;2020:1-5.
Weinstock C, Möhle R, Dorn C, et al. Successful use of eculizumab for treatment of an acute hemolytic reaction after ABO-incompatible red blood cell transfusion: Eculizumab treatment of acute hemolysis. Transfusion. 2015;55(3):605-610.
Pantelidou D, Pilalas D, Daios S, et al. Hyperhaemolytic transfusion reaction in two β-thalassaemia major patients: the role of eculizumab. J Clin Pharm Ther. 2022;47(3):411-414.
Cannas G, Dubreuil L, Fichez A, Gerfaud-Valentin M, Debard AL, Hot A. Delayed severe hemolytic transfusion reaction during pregnancy in a woman with β-thalassemia intermediate: successful outcome after Eculizumab administration. Am J Case Rep. 2021;22:e931107.

Auteurs

Anna Duval (A)

Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France.
Department of Nephrology Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France.

Véronique Frémeaux-Bacchi (V)

Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France.
Service d'Immunologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH