Comparison of biomarker for diagnosis of nitrous oxide abuse: challenge of cobalamin metabolic parameters, a retrospective study.
Biological markers
Cobalamin
Homocysteine
Methylmalonic acid
N2O
Neurology
Neuropathy
Nitrous oxide
Vitamin B12
Journal
Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
17
11
2022
accepted:
11
01
2023
revised:
10
01
2023
pubmed:
24
1
2023
medline:
22
3
2023
entrez:
23
1
2023
Statut:
ppublish
Résumé
Recreational use of nitrous oxide (N We retrospectively collected clinical and biological data from 52 patients with known, documented chronic N Plasma homocysteine was almost consistently increased in case of N There is no specific marker of nitrous oxide abuse according to levels of consumption, total vitamin B12 decrease could not be used either as consumption or as severity marker. However, we showed that homocysteine is consistently increased and could be used as marker of recent N
Sections du résumé
BACKGROUND
BACKGROUND
Recreational use of nitrous oxide (N
METHODS
METHODS
We retrospectively collected clinical and biological data from 52 patients with known, documented chronic N
RESULTS
RESULTS
Plasma homocysteine was almost consistently increased in case of N
CONCLUSION
CONCLUSIONS
There is no specific marker of nitrous oxide abuse according to levels of consumption, total vitamin B12 decrease could not be used either as consumption or as severity marker. However, we showed that homocysteine is consistently increased and could be used as marker of recent N
Identifiants
pubmed: 36690804
doi: 10.1007/s00415-023-11570-z
pii: 10.1007/s00415-023-11570-z
doi:
Substances chimiques
Vitamin B 12
P6YC3EG204
Nitrous Oxide
K50XQU1029
Methylmalonic Acid
8LL8S712J7
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2237-2245Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.
Références
Garakani A, Jaffe RJ, Savla D et al (2016) Neurologic, psychiatric, and other medical manifestations of nitrous oxide abuse: a systematic review of the case literature. Am J Addict 25(5):358–369. https://doi.org/10.1111/ajad.12372
doi: 10.1111/ajad.12372
pubmed: 27037733
Morris N, Lynch K, Greenberg SA (2015) Severe motor neuropathy or neuronopathy due to nitrous oxide toxicity after correction of vitamin B12 deficiency. Muscle Nerve 51(4):614–616. https://doi.org/10.1002/mus.24482
doi: 10.1002/mus.24482
pubmed: 25297001
Oussalah A, Julien M, Levy J et al (2019) Global burden related to nitrous oxide exposure in medical and recreational settings: a systematic review and individual patient data meta-analysis. J Clin Med 8(4):551. https://doi.org/10.3390/jcm8040551
doi: 10.3390/jcm8040551
pubmed: 31018613
pmcid: 6518054
Vollenbrock SE, Fokkema TM, Leijdekkers VJ, Vahl AC, Konings R, van Nieuwenhuizen RC (2021) Nitrous oxide abuse associated with severe thromboembolic complications. Eur J Vasc Endovasc Surg 62(4):656–657. https://doi.org/10.1016/j.ejvs.2021.05.041
doi: 10.1016/j.ejvs.2021.05.041
pubmed: 34275729
Molloy MJ, Latio IP, Rosen M (1973) Analysis of nitrous oxide concentrations in whole blood. Br J Anaesth 45(6):556–562. https://doi.org/10.1093/bja/45.6.556
doi: 10.1093/bja/45.6.556
pubmed: 4718246
Grzych G, Deheul S, Davion JB et al (2022) Marqueurs biologiques et impact métabolique de la consommation chronique de protoxyde d’azote. Ann Biol Clin 80:4. https://doi.org/10.1684/abc.2022.1729
doi: 10.1684/abc.2022.1729
Duque MA, Kresak JL, Falchook A, Harris NS (2015) Nitrous oxide abuse and vitamin B12 action in a 20-year-old woman: a case report. Lab Med 46(4):312–315. https://doi.org/10.1309/LM0L9HAVXCHF1UQM
doi: 10.1309/LM0L9HAVXCHF1UQM
pubmed: 26489675
Kondo H, Osborne ML, Kolhouse JF et al (1981) Nitrous oxide has multiple deleterious effects on cobalamin metabolism and causes decreases in activities of both mammalian cobalamin-dependent enzymes in rats. J Clin Invest 67(5):1270–1283. https://doi.org/10.1172/JCI110155
doi: 10.1172/JCI110155
pubmed: 6112240
pmcid: 370693
Deacon R, Perry J, Lumb M et al (1978) Selective inactivation of vitamin B12 in rats by nitrous oxide. The Lancet 312(8098):1023–1024. https://doi.org/10.1016/S0140-6736(78)92341-3
doi: 10.1016/S0140-6736(78)92341-3
Grzych G, Gernez E, Deheul S, Kim I (2022) Methylmalonic acid: Specific marker of chronic nitrous oxide abuse? Rev Med Interne. https://doi.org/10.1016/j.revmed.2022.01.001 . (Published online February 2022)
doi: 10.1016/j.revmed.2022.01.001
pubmed: 35094872
Wiedemann A, Oussalah A, Lamireau N et al (2022) Clinical, phenotypic and genetic landscape of case reports with genetically proven inherited disorders of vitamin B12 metabolism: a meta-analysis. Cell Rep Med 3(7):100670. https://doi.org/10.1016/j.xcrm.2022.100670
doi: 10.1016/j.xcrm.2022.100670
pubmed: 35764087
pmcid: 9381384
Grzych G, Douillard C, Lannoy J, Joncquel Chevalier Curt M (2020) Very high plasma homocysteine without malnutrition or inherited disorder. Clin Chem 66(11):1468–1469. https://doi.org/10.1093/clinchem/hvaa070
doi: 10.1093/clinchem/hvaa070
pubmed: 33141907
Caré W, Dufayet L, Piot MA et al (2021) Toxicités aiguës et chroniques associées à l’usage et au mésusage du protoxyde d’azote: mise au point. Rev Médecine Interne. https://doi.org/10.1016/j.revmed.2021.10.008 . (Published online December 10, 2021)
doi: 10.1016/j.revmed.2021.10.008
Waclawik AJ, Luzzio CC, Juhasz-Pocsine K, Hamilton V (2003) Myeloneuropathy from nitrous oxide abuse: unusually high methylmalonic acid and homocysteine levels. WMJ 102(4):43–45
pubmed: 12967021
Borovecki A, Borovecki A, Mlinaric A et al (2018) Informed consent and ethics committee approval in laboratory medicine. Biochem Medica. https://doi.org/10.11613/BM.2018.030201
doi: 10.11613/BM.2018.030201
Dyck PJ, O’Brien PC (2006) Polyneuropathy dysfunction scores. J Neurol Neurosurg Psychiatry 77(8):899–900. https://doi.org/10.1136/jnnp.2006.093781
doi: 10.1136/jnnp.2006.093781
pubmed: 16709581
pmcid: 2077639
Lozeron P, Théaudin M, Mincheva Z et al (2013) Effect on disability and safety of Tafamidis in late onset of Met30 transthyretin familial amyloid polyneuropathy. Eur J Neurol 20(12):1539–1545. https://doi.org/10.1111/ene.12225
doi: 10.1111/ene.12225
pubmed: 23834402
Gorevic P, Franklin J, Chen J, Sajeev G, Wang JCH, Lin H (2021) Indirect treatment comparison of the efficacy of patisiran and inotersen for hereditary transthyretin-mediated amyloidosis with polyneuropathy. Expert Opin Pharmacother 22(1):121–129. https://doi.org/10.1080/14656566.2020.1811850
doi: 10.1080/14656566.2020.1811850
pubmed: 32892660
Rafii M, Elango R, House JD et al (2009) Measurement of homocysteine and related metabolites in human plasma and urine by liquid chromatography electrospray tandem mass spectrometry. J Chromatogr B 877(28):3282–3291. https://doi.org/10.1016/j.jchromb.2009.05.002
doi: 10.1016/j.jchromb.2009.05.002
Blom HJ, Rooij A van, Hogeveen M (2007) A simple high-throughput method for the determination of plasma methylmalonic acid by liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med 45(5):645–650. https://doi.org/10.1515/CCLM.2007.117
doi: 10.1515/CCLM.2007.117
pubmed: 17484628
İspir E, Serdar MA, Ozgurtas T et al (2015) Comparison of four automated serum vitamin B12 assays. Clin Chem Lab Med CCLM 53(8):1205–1213. https://doi.org/10.1515/cclm-2014-0843
doi: 10.1515/cclm-2014-0843
pubmed: 25720078
Hannibal L, Lysne V, Bjørke-Monsen AL et al (2016) Biomarkers and algorithms for the diagnosis of vitamin B12 deficiency. Front Mol Biosci. https://doi.org/10.3389/fmolb.2016.00027 . (Accessed November 9, 2022)
doi: 10.3389/fmolb.2016.00027
pubmed: 27446930
pmcid: 4921487
Clarke R, Refsum H, Birks J et al (2003) Screening for vitamin B-12 and folate deficiency in older persons. Am J Clin Nutr 77(5):1241–1247. https://doi.org/10.1093/ajcn/77.5.1241
doi: 10.1093/ajcn/77.5.1241
pubmed: 12716678
Selhub J, Jacques PF, Dallal G, Choumenkovitch S, Rogers G (2008) The use of blood concentrations of vitamins and their respective functional indicators to define folate and vitamin B12 status. Food Nutr Bull 29(2_suppl1):S67–S73. https://doi.org/10.1177/15648265080292S110
doi: 10.1177/15648265080292S110
pubmed: 18709882
Mirkazemi C, Peterson GM, Tenni PC, Jackson SL (2012) Vitamin B12 deficiency in Australian residential aged care facilities. J Nutr Health Aging 16(3):277–280. https://doi.org/10.1007/s12603-011-0348-2
doi: 10.1007/s12603-011-0348-2
pubmed: 22456786
Nakazato M, Maeda T, Emura K, Maeda M, Tamura T (2012) Blood folate concentrations analyzed by microbiological assay and chemiluminescent immunoassay methods. J Nutr Sci Vitaminol (Tokyo) 58(1):59–62. https://doi.org/10.3177/jnsv.58.59
doi: 10.3177/jnsv.58.59
pubmed: 23007069
Stabler SP (2013) Vitamin B12 deficiency. N Engl J Med 368(2):149–160. https://doi.org/10.1056/NEJMcp1113996
doi: 10.1056/NEJMcp1113996
pubmed: 23301732
Frontiera MS, Stabler SP, Kolhouse JF, Allen RH (1994) Regulation of methionine metabolism: effects of nitrous oxide and excess dietary methionine. J Nutr Biochem 5(1):28–38. https://doi.org/10.1016/0955-2863(94)90006-X
doi: 10.1016/0955-2863(94)90006-X
Gernez E, Deheul S, Tard C, Joncquel M, Douillard C, Grzych G (2023) Plasma methionine and clinical severity in nitrous oxide consumption. Toxics 11(1):12. https://doi.org/10.3390/toxics11010012
doi: 10.3390/toxics11010012
Andrade VM, Dal Pont HS, Leffa DD et al (2014) Methylmalonic acid administration induces DNA damage in rat brain and kidney. Mol Cell Biochem 391(1):137–145. https://doi.org/10.1007/s11010-014-1996-4
doi: 10.1007/s11010-014-1996-4
pubmed: 24532006
McLaughlin BA, Nelson D, Silver IA, Erecinska M, Chesselet MF (1998) Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86(1):279–290. https://doi.org/10.1016/S0306-4522(97)00594-0
doi: 10.1016/S0306-4522(97)00594-0
pubmed: 9692761
Einsiedler M, Voulleminot P, Demuth S et al (2022) A rise in cases of nitrous oxide abuse: neurological complications and biological findings. J Neurol 269(2):577–582. https://doi.org/10.1007/s00415-021-10702-7
doi: 10.1007/s00415-021-10702-7
pubmed: 34245346