Metalloprotease-mediated cleavage of CD95 ligand.


Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
06 2023
Historique:
revised: 30 10 2022
received: 21 02 2022
accepted: 23 01 2023
medline: 23 6 2023
pubmed: 26 1 2023
entrez: 25 1 2023
Statut: ppublish

Résumé

CD95 is a member of the TNF receptor superfamily that is ubiquitously expressed in healthy and pathological tissues. Stimulation of CD95 by its physiological ligand CD95L induces its oligomerization leading in turn to the transduction of either apoptotic or nonapoptotic signals. CD95L can exist as both membrane-anchored and soluble forms (sCD95L), the latter resulting from the proteolytic cleavage of the former. Candidate proteases able to achieve CD95L cleavage were identified as matrix metalloproteases (MMP) due to their demonstrated ability to cleave other TNF superfamily ligands. The main goal of this study was to systematically identify the MMP family members capable of cleaving CD95L and subsequently determine the corresponding cleavage sites. By using different orthogonal biochemical approaches and combining them with molecular modelling, we confirmed data from the literature regarding CD95L cleavage by MMP-3 and MMP-7. Moreover, we found that MMP-2 and MMP-12 can cleave CD95L and characterized their resulting cleavage sites. This study provides a systematic approach to analyse the cleavage of CD95L, which until now had only been poorly described.

Identifiants

pubmed: 36694998
doi: 10.1111/febs.16737
doi:

Substances chimiques

Fas Ligand Protein 0
fas Receptor 0
Metalloproteases EC 3.4.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3145-3164

Informations de copyright

© 2023 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH & Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signalling complex (DISC) with the receptor. EMBO J 14, 5579-5588.
Malinin NL, Boldin MP, Kovalenko AV & Wallach D (1997) MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385, 540-544.
Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F & Lynch DH (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178, 2231-2235.
Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E et al. (2010) CD95 promotes tumour growth. Nature 465, 492-496.
Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A & Ceppi P (2015) The role of CD95 and CD95 ligand in cancer. Cell Death Differ 22, 549-559.
Peters AMJ, Kohfink B, Martin H, Griesinger F, Wörmann B, Gahr M & Roesler J (1999) Defective apoptosis due to a point mutation in the death domain of CD95 associated with autoimmune lymphoproliferative syndrome, T-cell lymphoma, and Hodgkin's disease. Exp Hematol 27, 868-874.
Ta NL, Chakrabandhu K, Huault S & Hueber AO (2018) The tyrosine phosphorylated pro-survival form of Fas intensifies the EGF-induced signal in colorectal cancer cells through the nuclear EGFR/STAT3-mediated pathway. Sci Rep 8, 12424.
Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, Blanco P, Le Seyec J, Ducret T, Counillon L et al. (2011) The naturally processed CD95L elicits a c-Yes/Calcium/PI3K-driven cell migration pathway. PLoS Biol 9, e1001090.
Malleter M, Tauzin S, Bessede A, Castellano R, Goubard A, Godey F, Levêque J, Jézéquel P, Campion L, Campone M et al. (2013) CD95L cell surface cleavage triggers a prometastatic signalling pathway in triple-negative breast cancer. Cancer Res 73, 6711-6721.
OReilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang J-G, Belz GT et al. (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, 659-663.
Poissonnier A, Sanséau D, Le Gallo M, Malleter M, Levoin N, Viel R, Morere L, Penna A, Blanco P, Dupuy A et al. (2016) CD95-mediated calcium signalling promotes T helper 17 trafficking to inflamed organs in lupus-prone mice. Immunity 45, 209-223.
Schneider P, Holler N, Bodmer J-L, Hahne M, Frei K, Fontana A & Tschopp J (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187, 1205-1213.
Risso V, Lafont É & Le Gallo M (2022) Therapeutic approaches targeting CD95L/CD95 signalling in cancer and autoimmune diseases. Cell Death Dis 13, 248.
Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F, Tinel A, Deperthes D, Calderara S, Schulthess T et al. (2003) Two adjacent trimeric Fas ligands are required for Fas signalling and formation of a death-inducing signalling complex. Mol Cell Biol 23, 1428-1440.
Vargo-Gogola T, Crawford HC, Fingleton B & Matrisian LM (2002) Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Arch Biochem Biophys 408, 155-161.
Kirkin V, Cahuzac N, Guardiola-Serrano F, Huault S, Lückerath K, Friedmann E, Novac N, Wels WS, Martoglio B, Hueber AO et al. (2007) The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death Differ 14, 1678-1687.
Matsuno H, Yudoh K, Watanabe Y, Nakazawa F, Aono H & Kimura T (2001) Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J Rheumatol 28, 22-28.
Kiaei M, Kipiani K, Calingasan NY, Wille E, Chen J, Heissig B, Rafii S, Lorenzl S & Beal MF (2007) Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 205, 74-81.
Schulte M, Reiss K, Lettau M, Maretzky T, Ludwig A, Hartmann D, de Strooper B, Janssen O & Saftig P (2007) ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ 14, 1040-1049.
Biglari B, Büchler A, Swing T, Child C, Biehl E, Reitzel T, Bruckner T, Ferbert T, Korff S, Rief H et al. (2015) Serum sCD95L concentration in patients with spinal cord injury. J Int Med Res 43, 250-256.
Moghaddam A, Sperl A, Heller R, Gerner HJ & Biglari B (2016) sCD95L in serum after spinal cord injury. Spinal Cord 54, 957-960.
Lorente L, Martín MM, Ortiz-López R, González-Rivero AF, Pérez-Cejas A, Cabrera J, García C, Uribe L & Jiménez A (2020) Association between serum sFasL concentrations and sepsis mortality. Infect Dis 53, 38-43.
Kozlowski M, Kowalczuk O, Sulewska A, Dziegielewski P, Lapuc G, Laudanski W, Niklinska W, Chyczewski L, Niklinski J & Laudanski J (2007) Serum soluble Fas ligand (sFasL) in patients with primary squamous cell carcinoma of the oesophagus. Folia Histochem Cytobiol 45, 199-204.
Ding Y-W, Pan S-Y, Xie W, Shen H-Y & Wang H-H (2018) Elevated soluble Fas and FasL in cerebrospinal fluid and serum of patients with anti-N-methyl-D-aspartate receptor encephalitis. Front Neurol 9, 904.
Shiota G, Oyama K, Noguchi N, Takano Y, Kitaoka S & Kawasaki H (1998) Clinical significance of serum soluble Fas ligand in patients with acute self-limited and fulminant hepatitis. Res Commun Mol Pathol Pharmacol 101, 3-12.
Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, Rieux-Laucat F, Siegel RM, Su HC, Teachey DT et al. (2010) Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): Report from the 2009 NIH International Workshop. Blood 116, e35-e40.
Caminha I, Fleisher TA, Hornung RL, Dale JK, Niemela JE, Price S, Davis J, Perkins K, Dowdell KC, Brown MR et al. (2010) Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol 125, 946.
De La Motte RT, Corné J, Cauchois A, Le Boulch M, Poupon C, Henno S, Rioux-Leclercq N, Le Pabic E, Laviolle B, Catros V et al. (2019) Serum CD95L level correlates with tumour immune infiltration and is a positive prognostic marker for advanced high-grade serous ovarian cancer. Mol Cancer Res 17, 2537-2548.
Molnár E, Radwan N, Kovács G, Andrikovics H, Henriquez F, Zarafov A, Hayman M, Linzner D, Thrasher AJ, Buckland M et al. (2020) Key diagnostic markers for autoimmune lymphoproliferative syndrome with molecular genetic diagnosis. Blood 136, 1933-1945.
D'Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J, Smith B, Timpl R, Zardi L & Murphy G (1997) Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem 250, 751-757.
English WR, Puente XS, Freije JMP, Knäuper V, Amour A, Merryweather A, López-Otín C & Murphy G (2000) Membrane type 4 matrix metalloproteinase (MMP17) has tumour necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem 275, 14046-14055.
Vandenbroucke RE, Dejonckheere E, Van Hauwermeiren F, Lodens S, De Rycke R, Van Wonterghem E, Staes A, Gevaert K, López-Otin C & Libert C (2013) Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF. EMBO Mol Med 5, 932.
Lee E-J, Han JE, Woo M-S, Shin JA, Park E-M, Kang JL, Moon PG, Baek M-C, Son W-S, Ko YT et al. (2014) Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNF-α activation. J Immunol 193, 2384-2393.
Churg A, Wang RD, Tai H, Wang X, Xie C, Dai J, Shapiro SD & Wright JL (2003) Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumour necrosis factor-alpha release. Am J Respir Crit Care Med 167, 1083-1089.
Gearing AJH, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL et al. (1994) Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 370, 555-557.
Mezyk-Kopeć R, Bzowska M, Stalińska K, Chełmicki T, Podkalicki M, Jucha J, Kowalczyk K, Mak P & Bereta J (2009) Identification of ADAM10 as a major TNF sheddase in ADAM17-deficient fibroblasts. Cytokine 46, 309-315.
Tam EM, Morrison CJ, Wu YI, Stack MS & Overall CM (2004) Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci U S A 101, 6917.
Secchiero P, Gonelli A, Corallini F, Ceconi C, Ferrari R & Zauli G (2010) Metalloproteinase 2 cleaves in vitro recombinant TRAIL: potential implications for the decreased serum levels of TRAIL after acute myocardial infarction. Atherosclerosis 211, 333-336.
Mohan MJ, Seaton T, Mitchell J, Howe A, Blackburn K, Burkhart W, Moyer M, Patel I, Waitt GM, Becherer JD et al. (2002) The τumor necrosis factor-α converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity. Biochemistry 41, 9462-9469.
Murphy G & Nagase H (2008) Progress in matrix metalloproteinase research. Mol Aspects Med 29, 290-308.
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA & Alvarez-Sánchez ME (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9, 1370.
Parks WC, Wilson CL & López-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4, 617-629.
Nabeshima K, Inoue T, Shimao Y & Sameshima T (2002) Matrix metalloproteinases in tumour invasion: role for cell migration. Pathol Int 52, 255-264.
Mannello F, Tonti GAM, Bagnara GP & Papa S (2006) Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells 24, 475-481.
Kessenbrock K, Wang CY & Werb Z (2015) Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 44-46, 184-190.
Augustin S, Berard M, Kellaf S, Peyri N, Fauvel-Lafève F, Legrand C, He L & Crépin M (2009) Matrix metalloproteinases are involved in both type I (apoptosis) and type II (autophagy) cell death induced by sodium phenylacetate in MDA-MB-231 breast tumour cells. Anticancer Res 29, 1335-1343.
Lim CC, Liu PY, Tan HZ, Lee P, Chin YM, Mok IY, Chan CM & Choo JC (2017) Severe infections in patients with lupus nephritis treated with immunosuppressants: a retrospective cohort study. Nephrology 22, 478-484.
Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S et al. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385, 729-733.
Moss ML, Jin S-LC, Milla ME, Burkhart W, Carter HL, Chen W-J, Clay WC, Didsbury JR, Hassler D, Hoffman CR et al. (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature 385, 733-736.
Daburon S, Devaud C, Costet P, Morello A, Garrigue-Antar L, Maillasson M, Hargous N, Lapaillerie D, Bonneu M, Dechanet-Merville J et al. (2013) Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumour activity. PLoS One 8, 54000.
Tanaka M, Itai T, Adachi M & Nagata S (1998) Downregulation of Fas ligand by shedding. Nat Med 4, 31-36.
Bordner AJ (2008) Predicting small ligand binding sites in proteins using backbone structure. Bioinformatics 24, 2865-2871.
Song J, Tan H, Perry AJ, Akutsu T, Webb GI, Whisstock JC & Pike RN (2012) PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites. PLoS One 7, e50300.
Klein J, Eales J, Zürbig P, Vlahou A, Mischak H & Stevens R (2013) Proteasix: a tool for automated and large-scale prediction of proteases involved in naturally occurring peptide generation. Proteomics 13, 1077-1082.
Li F, Chen J, Leier A, Marquez-Lago T, Liu Q, Wang Y, Revote J, Smith AI, Akutsu T, Webb GI et al. (2020) DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics 36, 1057-1065.
Imamura R, Konaka K, Matsumoto N, Hasegawa M, Fukui M, Mukaida N, Kinoshita T & Suda T (2004) Fas ligand induces cell-autonomous NF-kappaB activation and interleukin-8 production by a mechanism distinct from that of tumour necrosis factor-alpha. J Biol Chem 279, 46415-46423.
Bossaller L, Rathinam VAK, Bonegio R, Chiang P-I, Busto P, Wespiser AR, Caffrey DR, Li Q-Z, Mohan C, Fitzgerald KA et al. (2013) Overexpression of membrane-bound Fas ligand (CD95L) exacerbates autoimmune disease and renal pathology in pristane-induced lupus. J Immunol 191, 2104-2114.
Löffek S, Schilling O & Franzke C-W (2011) Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38, 191.
Vira HJ, Pradhan VD, Umare VD, Chaudhary AK, Rajadhyksha AG, Nadkar MY, Ghosh K & Nadkarni AH (2020) Role of MMP-2 and its inhibitor TIMP-2 as biomarkers for susceptibility to systemic lupus erythematosus. Biomark Med 14, 1109-1119.
Vira H, Pradhan V, Umare V, Chaudhary A, Rajadhyksha A, Nadkar M, Ghosh K & Nadkarni A (2017) Role of MMP-7 in the pathogenesis of systemic lupus erythematosus (SLE). Lupus 26, 937-943.
Lee JM, Kronbichler A, Park SJ, Kim SH, Han KH, Kang HG, Ha IS, Cheong H, Kim KH, Kim G et al. (2019) Association between serum matrix metalloproteinase- (MMP-) 3 levels and systemic lupus erythematosus: a meta-analysis. Dis Markers 2019, 9796735.
Balog JA, Kemeny A, Puskas LG, Burcsar S, Balog A & Szebeni GJ (2021) Investigation of newly diagnosed drug-naive patients with systemic autoimmune diseases revealed the cleaved peptide tyrosine (PYY 3-36) as a specific plasma biomarker of rheumatoid arthritis. Mediators Inflamm 2021, 5523582.
He MK, Le Y, Zhang YF, Ouyang HY, Jian PE, Yu ZS, Wang LJ & Shi M (2018) Matrix metalloproteinase 12 expression is associated with tumour FOXP3 + regulatory T cell infiltration and poor prognosis in hepatocellular carcinoma. Oncol Lett 16, 475-482.
Ella E, Harel Y, Abraham M, Wald H, Benny O, Karsch-Bluman A, Vincent D, Laurent D, Amir G, Izhar U et al. (2018) Matrix metalloproteinase 12 promotes tumour propagation in the lung. J Thorac Cardiovasc Surg 155, 2164-2175.e1.
Jiang H & Li H (2021) Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer 21, 149.
Azevedo Martins JM, Rabelo-Santos SH, Do Amaral Westin MC & Zeferino LC (2020) Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: a competing risk analysis. BMC Cancer 20, 660.
Li H, Qiu Z, Li F & Wang C (2017) The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett 14, 5865-5870.
Mehner C, Miller E, Nassar A, Bamlet WR, Radisky ES & Radisky DC (2015) Tumour cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes Cancer 6, 480-489.
Ibrahim FAER, Elfeky SE, Haroun M, Ahmed MAE, Elnaggar M, Ismail NAE & Abd El Moneim NA (2020) Association of matrix metalloproteinases 3 and 9 single nucleotide polymorphisms with breast cancer risk: a case-control study. Mol Clin Oncol 13, 54-62.
Gobin E, Bagwell K, Wagner J, Mysona D, Sandirasegarane S, Smith N, Bai S, Sharma A, Schleifer R & She J-X (2019) A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 19, 1-10.
Liao HY, Da CM, Liao B & Zhang HH (2021) Roles of matrix metalloproteinase-7 (MMP-7) in cancer. Clin Biochem 92, 9-18.
Guégan J-P, Pollet J, Ginestier C, Charafe-Jauffret E, Peter ME & Legembre P (2021) CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. iScience 24, 103538.
Kwon M & Firestein BL (2013) DNA transfection: calcium phosphate method. Methods Mol Biol 1018, 107-110.
Rawlings ND & Barrett AJ (1999) MEROPS: the peptidase database. Nucleic Acids Res 27, 325-331.
Bouyssié D, Hesse AM, Mouton-Barbosa E, Rompais M, MacRon C, Carapito C, Gonzalez De Peredo A, Couté Y, Dupierris V, Burel A et al. (2020) Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36, 3148-3155.
Krieger E & Vriend G (2014) YASARA view - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30, 2981-2982.

Auteurs

Vesna Risso (V)

Inserm UMR_S 1242, Oncogenesis Stress Signalling, University of Rennes, France.
Centre de lutte contre le Cancer Eugène Marquis, Rennes, France.

Mélissa Thomas (M)

Department of Chemistry and Molecular Biology, Lundberg Lab, University of Gothenburg, Sweden.

Blandine Guével (B)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes cedex, France.
Protim, Univ Rennes, Rennes cedex, France.

Regis Lavigne (R)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes cedex, France.
Protim, Univ Rennes, Rennes cedex, France.

Emmanuelle Com (E)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes cedex, France.
Protim, Univ Rennes, Rennes cedex, France.

Sophie Martin (S)

Inserm UMR_S 1242, Oncogenesis Stress Signalling, University of Rennes, France.
Centre de lutte contre le Cancer Eugène Marquis, Rennes, France.

Manon Nivet (M)

Inserm UMR_S 1242, Oncogenesis Stress Signalling, University of Rennes, France.
Centre de lutte contre le Cancer Eugène Marquis, Rennes, France.

Charles Pineau (C)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes cedex, France.
Protim, Univ Rennes, Rennes cedex, France.

Luc Negroni (L)

Inserm UMR_S 1258, The Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Université de Strasbourg, France.

Élodie Lafont (É)

Inserm UMR_S 1242, Oncogenesis Stress Signalling, University of Rennes, France.
Centre de lutte contre le Cancer Eugène Marquis, Rennes, France.

Éric Chevet (É)

Inserm UMR_S 1242, Oncogenesis Stress Signalling, University of Rennes, France.
Centre de lutte contre le Cancer Eugène Marquis, Rennes, France.

Leif A Eriksson (LA)

Department of Chemistry and Molecular Biology, Lundberg Lab, University of Gothenburg, Sweden.

Matthieu Le Gallo (M)

Inserm UMR_S 1242, Oncogenesis Stress Signalling, University of Rennes, France.
Centre de lutte contre le Cancer Eugène Marquis, Rennes, France.

Articles similaires

STAT3 Transcription Factor Respiratory Syncytial Virus Infections Humans Animals Mice
Respiratory Syncytial Virus Infections Humans Animals Mice STAT3 Transcription Factor
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Endometriosis Female Humans Animals Mice

Classifications MeSH