Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes.
Journal
Drugs
ISSN: 1179-1950
Titre abrégé: Drugs
Pays: New Zealand
ID NLM: 7600076
Informations de publication
Date de publication:
Feb 2023
Feb 2023
Historique:
accepted:
07
12
2022
pubmed:
26
1
2023
medline:
11
2
2023
entrez:
25
1
2023
Statut:
ppublish
Résumé
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Identifiants
pubmed: 36696027
doi: 10.1007/s40265-022-01826-9
pii: 10.1007/s40265-022-01826-9
pmc: PMC9875200
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
135-158Subventions
Organisme : Schweizerische Akademie der Medizinischen Wissenschaften
ID : YTCR 05/21
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : PCEFP3_194609
Organisme : Schweizerische Multiple Sklerose Gesellschaft
ID : (FG-1708-28871
Informations de copyright
© 2023. The Author(s).
Références
Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet. 2015;385(9971):884–98.
pubmed: 25260236
doi: 10.1016/S0140-6736(14)60456-6
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393(10172):689–701.
pubmed: 30686584
doi: 10.1016/S0140-6736(18)32596-0
Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020;54(2):185–91.
pubmed: 31852003
doi: 10.1159/000503831
Steriade C, Gillinder L, Rickett K, Hartel G, Higdon L, Britton J, et al. Discerning the role of autoimmunity and autoantibodies in epilepsy: a review. JAMA Neurol. 2021;78(11):1383–90.
pubmed: 34515743
doi: 10.1001/jamaneurol.2021.3113
Dubey D, Alqallaf A, Hays R, Freeman M, Chen K, Ding K, et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol. 2017;74(4):397–402.
pubmed: 28166327
doi: 10.1001/jamaneurol.2016.5429
Elisak M, Krysl D, Hanzalova J, Volna K, Bien CG, Leypoldt F, et al. The prevalence of neural antibodies in temporal lobe epilepsy and the clinical characteristics of seropositive patients. Seizure. 2018;63:1–6.
pubmed: 30391660
doi: 10.1016/j.seizure.2018.09.009
Nóbrega-Jr AW, Gregory CP, Schlindwein-Zanini R, Neves FS, Wolf P, Walz R, et al. Mesial temporal lobe epilepsy with hippocampal sclerosis is infrequently associated with neuronal autoantibodies. Epilepsia. 2018;59(9):e152–6.
pubmed: 30146688
doi: 10.1111/epi.14534
de Bruijn M, Bastiaansen AEM, Mojzisova H, van Sonderen A, Thijs RD, Majoie MJM, et al. Antibodies contributing to focal epilepsy signs and symptoms score. Ann Neurol. 2021;89(4):698–710.
pubmed: 33427313
pmcid: 8048471
doi: 10.1002/ana.26013
Lancaster E. The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol (Seoul, Korea). 2016;12(1):1–13.
doi: 10.3988/jcn.2016.12.1.1
Geis C, Planagumà J, Carreño M, Graus F, Dalmau J. Autoimmune seizures and epilepsy. J Clin Invest. 2019;129(3):926–40.
pubmed: 30714986
pmcid: 6391086
doi: 10.1172/JCI125178
Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev. 2017;97(2):839–87.
pubmed: 28298428
pmcid: 5539405
doi: 10.1152/physrev.00010.2016
Beghi E, Carpio A, Forsgren L, Hesdorffer DC, Malmgren K, Sander JW, et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51(4):671–5.
pubmed: 19732133
doi: 10.1111/j.1528-1167.2009.02285.x
Steriade C, Britton J, Dale RC, Gadoth A, Irani SR, Linnoila J, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia. 2020;61(7):1341–51.
pubmed: 32544279
doi: 10.1111/epi.16571
Abboud H, Probasco JC, Irani S, Ances B, Benavides DR, Bradshaw M, et al. Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management. J Neurol Neurosurg Psychiatry. 2021;92(7):757–68.
pubmed: 33649022
doi: 10.1136/jnnp-2020-325300
Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404.
pubmed: 26906964
pmcid: 5066574
doi: 10.1016/S1474-4422(15)00401-9
Fisher RS, van Emde BW, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–2.
pubmed: 15816939
doi: 10.1111/j.0013-9580.2005.66104.x
Spatola M, Dalmau J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr Opin Neurol. 2017;30(3):345–53.
pubmed: 28234800
pmcid: 5831325
doi: 10.1097/WCO.0000000000000449
Yeshokumar AK, Coughlin A, Fastman J, Psaila K, Harmon M, Randell T, et al. Seizures in autoimmune encephalitis-A systematic review and quantitative synthesis. Epilepsia. 2021;62(2):397–407.
pubmed: 33475161
doi: 10.1111/epi.16807
Ilyas-Feldmann M, Prüß H, Holtkamp M. Long-term seizure outcome and antiseizure medication use in autoimmune encephalitis. Seizure. 2021;86:138–43.
pubmed: 33618141
doi: 10.1016/j.seizure.2021.02.010
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–21.
pubmed: 28276062
pmcid: 5386840
doi: 10.1111/epi.13709
Rüegg SJ, Jungi TW. Antibody-mediated erythrolysis and erythrophagocytosis by human monocytes, macrophages and activated macrophages. Evidence for distinction between involvement of high-affinity and low-affinity receptors for IgG by using different erythroid target cells. Immunology. 1988;63(3):513–20.
pubmed: 2965100
pmcid: 1454764
Dalakas MC. B cells in the pathophysiology of autoimmune neurological disorders: a credible therapeutic target. Pharmacol Ther. 2006;112(1):57–70.
pubmed: 16644016
doi: 10.1016/j.pharmthera.2006.03.005
Ehling P, Melzer N, Budde T, Meuth SG. CD8+ T cell-mediated neuronal dysfunction and degeneration in limbic encephalitis. Front Neurol. 2015;15(6):153.
Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis. 2010;10(12):835–44.
pubmed: 20952256
doi: 10.1016/S1473-3099(10)70222-X
Graus F, Saiz A, Dalmau J. Antibodies and neuronal autoimmune disorders of the CNS. J Neurol. 2010;257(4):509–17.
pubmed: 20035430
doi: 10.1007/s00415-009-5431-9
Newman M, Airey C, Blum S, Scott JG, Wong RC, Gillis D. Chapter 9—autoimmune encephalitis: clinical features, pathophysiology, and management. In: Minagar A, editor. Neuroinflammation (Second Edition): Academic Press; 2018. pp. 193-216.
Rosenfeld MR, Titulaer MJ, Dalmau J. Paraneoplastic syndromes and autoimmune encephalitis: five new things. Neurol Clin Pract. 2012;2(3):215–23.
pubmed: 23634368
pmcid: 3613202
doi: 10.1212/CPJ.0b013e31826af23e
Huijbers MG, Plomp JJ, van der Maarel SM, Verschuuren JJ. IgG4-mediated autoimmune diseases: a niche of antibody-mediated disorders. Ann N Y Acad Sci. 2018;1413(1):92–103.
pubmed: 29377160
pmcid: 5801142
doi: 10.1111/nyas.13561
Saitakis G, Chwalisz BK. The neurology of IGG4-related disease. J Neurol Sci. 2021;424: 117420.
pubmed: 33845982
doi: 10.1016/j.jns.2021.117420
Blinder T, Lewerenz J. Cerebrospinal fluid findings in patients with autoimmune encephalitis-a systematic analysis. Front Neurol. 2019;10:804.
pubmed: 31404257
pmcid: 6670288
doi: 10.3389/fneur.2019.00804
van Sonderen A, Ariño H, Petit-Pedrol M, Leypoldt F, Körtvélyessy P, Wandinger K-P, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology. 2016;87(5):521–8.
pubmed: 27371488
pmcid: 4970662
doi: 10.1212/WNL.0000000000002917
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol. 2020;16(11):601–17.
pubmed: 33005040
pmcid: 7528717
doi: 10.1038/s41582-020-0400-0
Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010;30(17):5866–75.
pubmed: 20427647
pmcid: 2868315
doi: 10.1523/JNEUROSCI.0167-10.2010
Flanagan EP, Kotsenas AL, Britton JW, McKeon A, Watson RE, Klein CJ, et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol Neuroimmunol Neuroinflamm. 2015;2(6): e161.
pubmed: 26468474
pmcid: 4592539
doi: 10.1212/NXI.0000000000000161
Heine J, Prüss H, Kopp UA, Wegner F, Then Bergh F, Münte T, et al. Beyond the limbic system: disruption and functional compensation of large-scale brain networks in patients with anti-LGI1 encephalitis. J Neurol Neurosurg Psychiatry. 2018;89(11):1191–9.
pubmed: 29886429
doi: 10.1136/jnnp-2017-317780
Chabrol E, Navarro V, Provenzano G, Cohen I, Dinocourt C, Rivaud-Péchoux S, et al. Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice. Brain. 2010;133(9):2749–62.
pubmed: 20659958
pmcid: 2929330
doi: 10.1093/brain/awq171
Ramberger M, Berretta A, Tan JMM, Sun B, Michael S, Yeo T, et al. Distinctive binding properties of human monoclonal LGI1 autoantibodies determine pathogenic mechanisms. Brain. 2020;143(6):1731–45.
pubmed: 32437528
pmcid: 7296845
doi: 10.1093/brain/awaa104
Kornau HC, Kreye J, Stumpf A, Fukata Y, Parthier D, Sammons RP, et al. Human cerebrospinal fluid monoclonal LGI1 autoantibodies increase neuronal excitability. Ann Neurol. 2020;87(3):405–18.
pubmed: 31900946
doi: 10.1002/ana.25666
Baudin P, Whitmarsh S, Cousyn L, Roussel D, Lecas S, Lehongre K, et al. Kv1.1 channels inhibition in the rat motor cortex recapitulates seizures associated with anti-LGI1 encephalitis. Prog Neurobiol. 2022;213:102262.
pubmed: 35283238
doi: 10.1016/j.pneurobio.2022.102262
Petit-Pedrol M, Sell J, Planagumà J, Mannara F, Radosevic M, Haselmann H, et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain. 2018;141(11):3144–59.
pubmed: 30346486
pmcid: 6202570
Peng X, Hughes EG, Moscato EH, Parsons TD, Dalmau J, Balice-Gordon RJ. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol. 2015;77(3):381–98.
pubmed: 25369168
pmcid: 4365686
doi: 10.1002/ana.24293
Ohkawa T, Satake S, Yokoi N, Miyazaki Y, Ohshita T, Sobue G, et al. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. J Neurosci. 2014;34(24):8151–63.
pubmed: 24920620
pmcid: 6608235
doi: 10.1523/JNEUROSCI.4415-13.2014
Spatola M, Petit-Pedrol M, Simabukuro MM, Armangue T, Castro FJ, Barcelo Artigues MI, et al. Investigations in GABA(A) receptor antibody-associated encephalitis. Neurology. 2017;88(11):1012–20.
pubmed: 28202703
pmcid: 5384834
doi: 10.1212/WNL.0000000000003713
Noviello CM, Kreye J, Teng J, Prüss H, Hibbs RE. Structural mechanisms of GABA(A) receptor autoimmune encephalitis. Cell. 2022;185(14):2469-77.e13.
pubmed: 35803245
doi: 10.1016/j.cell.2022.06.025
Duong SL, Prüss H. Molecular disease mechanisms of human antineuronal monoclonal autoantibodies. Trends Mol Med. 2023; 29(1): 20-34.
pubmed: 36280535
doi: 10.1016/j.molmed.2022.09.011
Nibber A, Mann EO, Pettingill P, Waters P, Irani SR, Kullmann DM, et al. Pathogenic potential of antibodies to the GABA(B) receptor. Epilepsia Open. 2017;2(3):355–9.
pubmed: 29588966
pmcid: 5862107
doi: 10.1002/epi4.12067
Ishida K, Mitoma H, Song SY, Uchihara T, Inaba A, Eguchi S, et al. Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Ann Neurol. 1999;46(2):263–7.
pubmed: 10443895
doi: 10.1002/1531-8249(199908)46:2<263::AID-ANA19>3.0.CO;2-0
Stagg CJ, Lang B, Best JG, McKnight K, Cavey A, Johansen-Berg H, et al. Autoantibodies to glutamic acid decarboxylase in patients with epilepsy are associated with low cortical GABA levels. Epilepsia. 2010;51(9):1898–901.
pubmed: 20550553
pmcid: 7610901
doi: 10.1111/j.1528-1167.2010.02644.x
Malter MP, Helmstaedter C, Urbach H, Vincent A, Bien CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol. 2010;67(4):470–8.
pubmed: 20437582
doi: 10.1002/ana.21917
Li X, Guo Q, Zheng Z, Wang X, Liu S. Immune-mediated epilepsy with GAD65 antibodies. J Neuroimmunol. 2020;15(341): 577189.
doi: 10.1016/j.jneuroim.2020.577189
Kim J, Namchuk M, Bugawan T, Fu Q, Jaffe M, Shi Y, et al. Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65, distinguish stiff-man syndrome from insulin-dependent diabetes mellitus. J Exp Med. 1994;180(2):595–606.
pubmed: 7519242
doi: 10.1084/jem.180.2.595
Daw K, Ujihara N, Atkinson M, Powers AC. Glutamic acid decarboxylase autoantibodies in stiff-man syndrome and insulin-dependent diabetes mellitus exhibit similarities and differences in epitope recognition. J Immunol. 1996;156(2):818–25.
pubmed: 8543838
doi: 10.4049/jimmunol.156.2.818
Leypoldt F, Titulaer MJ, Aguilar E, Walther J, Bönstrup M, Havemeister S, et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: case report. Neurology. 2013;81(18):1637–9.
pubmed: 24089390
pmcid: 3806918
doi: 10.1212/WNL.0b013e3182a9f531
DeSena A, Graves D, Warnack W, Greenberg BM. Herpes simplex encephalitis as a potential cause of anti–N-methyl-d-aspartate receptor antibody encephalitis: report of 2 cases. JAMA Neurol. 2014;71(3):344–6.
pubmed: 24473671
doi: 10.1001/jamaneurol.2013.4580
Armangue T, Spatola M, Vlagea A, Mattozzi S, Cárceles-Cordon M, Martinez-Heras E, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018;17(9):760–72.
pubmed: 30049614
pmcid: 6128696
doi: 10.1016/S1474-4422(18)30244-8
Nosadini M, Mohammad SS, Corazza F, Ruga EM, Kothur K, Perilongo G, et al. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases. Dev Med Child Neurol. 2017;59(8):796–805.
pubmed: 28439890
doi: 10.1111/dmcn.13448
Alexopoulos H, Kouremenos E, Akrivou S, Naoumis D, Antonopoulou M, Vlachoyiannopoulos P, et al. Post-Herpes Simplex Virus (HSV) Autoimmune Encephalitis: A Case Series and Novel Immunological Findings (P1.292). Neurology. 2016;86(16 Supplement):P1.292.
Solís N, Salazar L, Hasbun R. Anti-NMDA receptor antibody encephalitis with concomitant detection of Varicella zoster virus. J Clin Virol. 2016;83:26–8.
pubmed: 27529308
doi: 10.1016/j.jcv.2016.08.292
Schäbitz W-R, Rogalewski A, Hagemeister C, Bien CG. VZV brainstem encephalitis triggers NMDA receptor immunoreaction. Neurology. 2014;83(24):2309–11.
pubmed: 25378669
doi: 10.1212/WNL.0000000000001072
Hou R, Wu J, He D, Yan Y, Li L. Anti-N-methyl-D-aspartate receptor encephalitis associated with reactivated Epstein-Barr virus infection in pediatric patients: three case reports. Med (Baltim). 2019;98(20): e15726.
doi: 10.1097/MD.0000000000015726
Valencia Sanchez C, Theel E, Binnicker M, Toledano M, McKeon A. Autoimmune encephalitis after SARS-CoV-2 infection. Case frequency, findings, and outcomes. Neurology 2021;97(23):e2262-e8.
Asadi-Pooya AA. Seizures associated with coronavirus infections. Seizure. 2020;79:49–52.
pubmed: 32416567
pmcid: 7212943
doi: 10.1016/j.seizure.2020.05.005
Carroll E, Melmed KR, Frontera J, Placantonakis DG, Galetta S, Balcer L, et al. Cerebrospinal fluid findings in patients with seizure in the setting of COVID-19: a review of the literature. Seizure. 2021;89:99–106.
pubmed: 34044299
pmcid: 8127527
doi: 10.1016/j.seizure.2021.05.003
van Sonderen A, Roelen DL, Stoop JA, Verdijk RM, Haasnoot GW, Thijs RD, et al. Anti-LGI1 encephalitis is strongly associated with HLA-DR7 and HLA-DRB4. Ann Neurol. 2017;81(2):193–8.
pubmed: 28026046
doi: 10.1002/ana.24858
Mueller SH, Färber A, Prüss H, Melzer N, Golombeck KS, Kümpfel T, et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol. 2018;83(4):863–9.
pubmed: 29572931
doi: 10.1002/ana.25216
Strippel C, Herrera-Rivero M, Wendorff M, Tietz AK, Degenhardt F, Witten A, et al. A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies. Brain. 2022; Mar 28:awac119. https://doi.org/10.1093/brain/awac119 . Online ahead of print. PMID: 35348614
Binks S, Varley J, Lee W, Makuch M, Elliott K, Gelfand JM, et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain. 2018;141(8):2263–71.
pubmed: 29788256
pmcid: 6118231
doi: 10.1093/brain/awy109
Kim TJ, Lee ST, Moon J, Sunwoo JS, Byun JI, Lim JA, et al. Anti-LGI1 encephalitis is associated with unique HLA subtypes. Ann Neurol. 2017;81(2):183–92.
pubmed: 28026029
doi: 10.1002/ana.24860
van Vliet EA, Aronica E, Gorter JA. Blood-brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol. 2015;38:26–34.
pubmed: 25444846
doi: 10.1016/j.semcdb.2014.10.003
Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med. 2018;378(9):840–51.
pubmed: 29490181
doi: 10.1056/NEJMra1708712
Lin Z, Si Q, Xiaoyi Z. Association between epilepsy and systemic autoimmune diseases: a meta-analysis. Seizure. 2016;41:160–6.
pubmed: 27592469
doi: 10.1016/j.seizure.2016.08.003
Ong MS, Kohane IS, Cai T, Gorman MP, Mandl KD. Population-level evidence for an autoimmune etiology of epilepsy. JAMA Neurol. 2014;71(5):569–74.
pubmed: 24687183
pmcid: 4324719
doi: 10.1001/jamaneurol.2014.188
Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40.
pubmed: 21135885
doi: 10.1038/nrneurol.2010.178
Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96:70–82.
pubmed: 25445483
doi: 10.1016/j.neuropharm.2014.10.027
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15(8):459–72.
pubmed: 31263255
doi: 10.1038/s41582-019-0217-x
Youn Y, Sung IK, Lee IG. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J Pediatr. 2013;56(7):271–4.
pubmed: 23908665
pmcid: 3728444
doi: 10.3345/kjp.2013.56.7.271
Zhou C, Qi C, Zhao J, Wang F, Zhang W, Li C, et al. Interleukin-1β inhibits voltage-gated sodium currents in a time- and dose-dependent manner in cortical neurons. Neurochem Res. 2011;36(6):1116–23.
pubmed: 21448594
doi: 10.1007/s11064-011-0456-8
Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, et al. GABA(A) receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep. 2022;12(1):17956.
pubmed: 36289354
pmcid: 9605959
doi: 10.1038/s41598-022-22806-9
Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001;4(7):702–10.
pubmed: 11426226
doi: 10.1038/89490
Terrone G, Pauletti A, Salamone A, Rizzi M, Villa BR, Porcu L, et al. Inhibition of monoacylglycerol lipase terminates diazepam-resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet. Epilepsia. 2018;59(1):79–91.
pubmed: 29171003
doi: 10.1111/epi.13950
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40.
pubmed: 20023662
doi: 10.1038/ni.1831
Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014;395(2):203–30.
pubmed: 24127541
doi: 10.1515/hsz-2013-0241
Devinsky O, Schein A, Najjar S. Epilepsy associated with systemic autoimmune disorders. Epilepsy Curr. 2013;13(2):62–8.
pubmed: 23646005
pmcid: 3639560
doi: 10.5698/1535-7597-13.2.62
Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72(5):648–72.
pubmed: 23280789
doi: 10.1002/ana.23648
Janigro D. Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier. Epilepsia. 2012;53(Suppl 1):26–34.
pubmed: 22612806
pmcid: 4093790
doi: 10.1111/j.1528-1167.2012.03472.x
Salar S, Maslarova A, Lippmann K, Nichtweiss J, Weissberg I, Sheintuch L, et al. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia. 2014;55(8):1255–63.
pubmed: 24995798
doi: 10.1111/epi.12713
Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Veksler R, Dalipaj H, et al. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain. 2017;140(6):1692–705.
pubmed: 28444141
doi: 10.1093/brain/awx073
Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 2015;78:115–25.
pubmed: 25836421
pmcid: 4426044
doi: 10.1016/j.nbd.2015.02.029
Löscher W, Friedman A. Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: a cause, consequence, or both? Int J Mol Sci. 2020;21:2.
doi: 10.3390/ijms21020591
Frigerio F, Frasca A, Weissberg I, Parrella S, Friedman A, Vezzani A, et al. Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia. 2012;53(11):1887–97.
pubmed: 22984896
pmcid: 3651831
doi: 10.1111/j.1528-1167.2012.03666.x
Varadkar S, Bien CG, Kruse CA, Jensen FE, Bauer J, Pardo CA, et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014;13(2):195–205.
pubmed: 24457189
pmcid: 4005780
doi: 10.1016/S1474-4422(13)70260-6
Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science. 1994;265(5172):648–51.
pubmed: 8036512
doi: 10.1126/science.8036512
Watson R, Jiang Y, Bermudez I, Houlihan L, Clover L, McKnight K, et al. Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology. 2004;63(1):43–50.
pubmed: 15249609
doi: 10.1212/01.WNL.0000132651.66689.0F
Orsini A, Foiadelli T, Carli N, Costagliola G, Masini B, Bonuccelli A, et al. Rasmussen’s encephalitis: from immune pathogenesis towards targeted-therapy. Seizure. 2020;81:76–83.
pubmed: 32769034
doi: 10.1016/j.seizure.2020.07.023
Ramaswamy V, Walsh JG, Sinclair DB, Johnson E, Tang-Wai R, Wheatley BM, et al. Inflammasome induction in Rasmussen’s encephalitis: cortical and associated white matter pathogenesis. J Neuroinflamm. 2013;10(1):918.
doi: 10.1186/1742-2094-10-152
Tröscher AR, Wimmer I, Quemada-Garrido L, Köck U, Gessl D, Verberk SGS, et al. Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol. 2019;137(4):619–35.
pubmed: 30663001
pmcid: 6426829
doi: 10.1007/s00401-019-01958-5
Tang C, Yang W, Luan G. Progress in pathogenesis and therapy of Rasmussen’s encephalitis. Acta Neurol Scand. 2022;146(6):761–6.
pubmed: 36189924
doi: 10.1111/ane.13712
Tang C, Wang X, Deng J, Xiong Z, Guan Y, Zhou J, et al. Increased inflammasome-activated pyroptosis mediated by caspase-1 in Rasmussen’s encephalitis. Epilepsy Res. 2021;18(179): 106843.
Leitner DF, Lin Z, Sawaged Z, Kanshin E, Friedman D, Devore S, et al. Brain Molecular Mechanisms in Rasmussen Encephalitis. Epilepsia. 2022. https://doi.org/10.1111/epi.17457 .
doi: 10.1111/epi.17457
pubmed: 36336987
Dubey D, Blackburn K, Greenberg B, Stuve O, Vernino S. Diagnostic and therapeutic strategies for management of autoimmune encephalopathies. Expert Rev Neurother. 2016;16(8):937–49.
pubmed: 27171736
doi: 10.1080/14737175.2016.1189328
Chen B, Lopez Chiriboga AS, Sirven JI, Feyissa AM. Autoimmune encephalitis-related seizures and epilepsy: diagnostic and therapeutic approaches. Mayo Clin Proc. 2021;96(8):2029–39.
pubmed: 34353466
doi: 10.1016/j.mayocp.2021.02.019
Irani SR, Michell AW, Lang B, Pettingill P, Waters P, Johnson MR, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69(5):892–900.
pubmed: 21416487
doi: 10.1002/ana.22307
Varley JA, Webb AJS, Balint B, Fung VSC, Sethi KD, Tijssen MAJ, et al. The Movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry. 2019;90(6):724–6.
pubmed: 30032119
doi: 10.1136/jnnp-2018-318584
Petit-Pedrol M, Armangue T, Peng X, Bataller L, Cellucci T, Davis R, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 2014;13(3):276–86.
pubmed: 24462240
pmcid: 4838043
doi: 10.1016/S1474-4422(13)70299-0
Leypoldt F, Wandinger KP, Bien CG, Dalmau J. Autoimmune encephalitis. Eur Neurol Rev. 2013;8(1):31–7.
pubmed: 27330568
pmcid: 4910513
doi: 10.17925/ENR.2013.08.01.31
Steriade C, Moosa ANV, Hantus S, Prayson RA, Alexopoulos A, Rae-Grant A. Electroclinical features of seizures associated with autoimmune encephalitis. Seizure. 2018;60:198–204.
pubmed: 30031297
doi: 10.1016/j.seizure.2018.06.021
De Leiris N, Ruel B, Vervandier J, Boucraut J, Grimaldi S, Horowitz T, et al. Decrease in the cortex/striatum metabolic ratio on [(18)F]-FDG PET: a biomarker of autoimmune encephalitis. Eur J Nucl Med Mol Imaging. 2022;49(3):921–31.
pubmed: 34462791
doi: 10.1007/s00259-021-05507-9
Dubey D, Pittock SJ, Kelly CR, McKeon A, Lopez-Chiriboga AS, Lennon VA, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol. 2018;83(1):166–77.
pubmed: 29293273
pmcid: 6011827
doi: 10.1002/ana.25131
Li Y, Tymchuk S, Barry J, Muppidi S, Le S. Antibody prevalence in epilepsy before surgery (APES) in drug-resistant focal epilepsy. Epilepsia. 2021;62(3):720–8.
pubmed: 33464599
doi: 10.1111/epi.16820
Rada A, Birnbacher R, Gobbi C, Kurthen M, Ludolph A, Naumann M, et al. Seizures associated with antibodies against cell surface antigens are acute symptomatic and not indicative of epilepsy: insights from long-term data. J Neurol. 2021;268(3):1059–69.
pubmed: 33025119
doi: 10.1007/s00415-020-10250-6
Chen SS, Zhang YF, Di Q, Shi JP, Wang LL, Lin XJ, et al. Predictors and prognoses of epilepsy after anti-neuronal antibody-positive autoimmune encephalitis. Seizure. 2021;92:189–94.
pubmed: 34551365
doi: 10.1016/j.seizure.2021.09.007
Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12(2):157–65.
pubmed: 23290630
pmcid: 3563251
doi: 10.1016/S1474-4422(12)70310-1
Bartolini L. Practice current: how do you treat anti-NMDA receptor encephalitis? Neurol Clin Pract. 2016;6(1):69–72.
pubmed: 29443234
pmcid: 5765895
doi: 10.1212/CPJ.0000000000000219
Bartolini L, Muscal E. Differences in treatment of anti-NMDA receptor encephalitis: results of a worldwide survey. J Neurol. 2017;264(4):647–53.
pubmed: 28154970
doi: 10.1007/s00415-017-8407-1
Sechi E, Flanagan EP. Antibody-mediated autoimmune diseases of the CNS: challenges and approaches to diagnosis and management. Front Neurol. 2021;12: 673339.
pubmed: 34305787
pmcid: 8292678
doi: 10.3389/fneur.2021.673339
Jiang Y, Tian X, Gu Y, Li F, Wang X. Application of plasma exchange in steroid-responsive encephalopathy. Front Immunol. 2019;10:324.
pubmed: 30873174
pmcid: 6400967
doi: 10.3389/fimmu.2019.00324
Heine J, Ly LT, Lieker I, Slowinski T, Finke C, Prüss H, et al. Immunoadsorption or plasma exchange in the treatment of autoimmune encephalitis: a pilot study. J Neurol. 2016;263(12):2395–402.
pubmed: 27604620
doi: 10.1007/s00415-016-8277-y
Dogan Onugoren M, Golombeck KS, Bien C, Abu-Tair M, Brand M, Bulla-Hellwig M, et al. Immunoadsorption therapy in autoimmune encephalitides. Neurol Neuroimmunol Neuroinflamm. 2016;3(2): e207.
pubmed: 26977423
pmcid: 4772911
doi: 10.1212/NXI.0000000000000207
Macher S, Zimprich F, De Simoni D, Höftberger R, Rommer PS. Management of autoimmune encephalitis: an observational monocentric study of 38 patients. Front Immunol. 2018;22:9.
de Bruijn MAAM, van Sonderen A, van Coevorden-Hameete MH, Bastiaansen AEM, Schreurs MWJ, Rouhl RPW, et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABA<sub>B</sub>R encephalitis. Neurology. 2019;92(19):e2185–96.
pubmed: 30979857
pmcid: 6537134
doi: 10.1212/WNL.0000000000007475
Cuttle L, Munns AJ, Hogg NA, Scott JR, Hooper WD, Dickinson RG, et al. Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab Dispos. 2000;28(8):945–50.
pubmed: 10901705
Jubiz W, Meikle AW, Levinson RA, Mizutani S, West CD, Tyler FH. Effect of diphenylhydantoin on the metabolism of dexamethasone. N Engl J Med. 1970;283(1):11–4.
pubmed: 4315902
doi: 10.1056/NEJM197007022830103
Nation RL, Evans AM, Milne RW. Pharmacokinetic drug interactions with phenytoin (Part II). Clin Pharmacokinet. 1990;18(2):131–50.
pubmed: 2180613
doi: 10.2165/00003088-199018020-00004
Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol. 2003;2(6):347–56.
pubmed: 12849151
doi: 10.1016/S1474-4422(03)00409-5
Koehler PJ. Use of corticosteroids in neuro-oncology. Anticancer Drugs. 1995;6(1):19–33.
pubmed: 7756680
doi: 10.1097/00001813-199502000-00002
Audet-Walsh E, Auclair-Vincent S, Anderson A. Glucocorticoids and phenobarbital induce murine CYP2B genes by independent mechanisms. Expert Opin Drug Metab Toxicol. 2009;5(12):1501–11.
pubmed: 19732027
doi: 10.1517/17425250903234709
Wen X, Wang JS, Kivistö KT, Neuvonen PJ, Backman JT. In vitro evaluation of valproic acid as an inhibitor of human cytochrome P450 isoforms: preferential inhibition of cytochrome P450 2C9 (CYP2C9). Br J Clin Pharmacol. 2001;52(5):547–53.
pubmed: 11736863
pmcid: 2014611
doi: 10.1046/j.0306-5251.2001.01474.x
Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2011;89(5):735–40.
pubmed: 21430660
doi: 10.1038/clpt.2011.35
Berman E, Noyman I, Medvedovsky M, Ekstein D, Eyal S. Not your usual drug-drug interactions: monoclonal antibody-based therapeutics may interact with antiseizure medications. Epilepsia. 2022;63(2):271–89.
pubmed: 34967010
doi: 10.1111/epi.17147
Dalmau J, Rosenfeld MR. Autoimmune encephalitis update. Neuro Oncol. 2014;16(6):771–8.
pubmed: 24637228
pmcid: 4022229
doi: 10.1093/neuonc/nou030
Gabilondo I, Saiz A, Galán L, González V, Jadraque R, Sabater L, et al. Analysis of relapses in anti-NMDAR encephalitis. Neurology. 2011;77(10):996–9.
pubmed: 21865579
doi: 10.1212/WNL.0b013e31822cfc6b
Abboud H, Probasco J, Irani SR, Ances B, Benavides DR, Bradshaw M, et al. Autoimmune encephalitis: proposed recommendations for symptomatic and long-term management. J Neurol Neurosurg Psychiatry. 2021;92(8):897–907.
pubmed: 33649021
doi: 10.1136/jnnp-2020-325302
Zuliani L, Nosadini M, Gastaldi M, Spatola M, Iorio R, Zoccarato M, et al. Management of antibody-mediated autoimmune encephalitis in adults and children: literature review and consensus-based practical recommendations. Neurol Sci. 2019;40(10):2017–30.
pubmed: 31161339
doi: 10.1007/s10072-019-03930-3
Stuby J, Herren T, Schwegler Naumburger G, Papet C, Rudiger A. Immune checkpoint inhibitor therapy-associated encephalitis: a case series and review of the literature. Swiss Med Wkly. 2020;16(150): w20377.
doi: 10.4414/smw.2020.20377
Dubey D, Singh J, Britton JW, Pittock SJ, Flanagan EP, Lennon VA, et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia. 2017;58(7):1181–9.
pubmed: 28555833
doi: 10.1111/epi.13797
Dubey D, Kothapalli N, McKeon A, Flanagan EP, Lennon VA, Klein CJ, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol. 2018;323:62–72.
pubmed: 30196836
doi: 10.1016/j.jneuroim.2018.07.009
Balu R, McCracken L, Lancaster E, Graus F, Dalmau J, Titulaer MJ. A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis. Neurology. 2019;92(3):e244–52.
pubmed: 30578370
pmcid: 6340387
doi: 10.1212/WNL.0000000000006783
Toledano M, Britton JW, McKeon A, Shin C, Lennon VA, Quek AM, et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology. 2014;82(18):1578–86.
pubmed: 24706013
pmcid: 4013813
doi: 10.1212/WNL.0000000000000383
von Rhein B, Wagner J, Widman G, Malter MP, Elger CE, Helmstaedter C. Suspected antibody negative autoimmune limbic encephalitis: outcome of immunotherapy. Acta Neurol Scand. 2017;135(1):134–41.
doi: 10.1111/ane.12575
Granata T, Fusco L, Gobbi G, Freri E, Ragona F, Broggi G, et al. Experience with immunomodulatory treatments in Rasmussen’s encephalitis. Neurology. 2003;61(12):1807–10.
pubmed: 14694056
doi: 10.1212/01.WNL.0000099074.04539.E0
Andrews PI, Dichter MA, Berkovic SF, Newton MR, McNamara JO. Plasmapheresis in Rasmussen’s encephalitis. Neurology. 1996;46(1):242–6.
pubmed: 8559385
doi: 10.1212/WNL.46.1.242
Palace J, Lang B. Epilepsy: an autoimmune disease? J Neurol Neurosurg Psychiatry. 2000;69(6):711–4.
pubmed: 11080217
pmcid: 1737165
doi: 10.1136/jnnp.69.6.711
Bien CG, Tiemeier H, Sassen R, Kuczaty S, Urbach H, von Lehe M, et al. Rasmussen encephalitis: incidence and course under randomized therapy with tacrolimus or intravenous immunoglobulins. Epilepsia. 2013;54(3):543–50.
pubmed: 23216622
doi: 10.1111/epi.12042
Pellegrin S, Baldeweg T, Pujar S, D’Arco F, Cantalupo G, Varadkar S, et al. Immunomodulation with azathioprine therapy in Rasmussen syndrome: a multimodal evaluation. Neurology. 2021;96(2):e267–79.
pubmed: 33046614
doi: 10.1212/WNL.0000000000011004
Lagarde S, Villeneuve N, Trébuchon A, Kaphan E, Lepine A, McGonigal A, et al. Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen’s encephalitis: An open pilot study. Epilepsia. 2016;57(6):956–66.
pubmed: 27106864
doi: 10.1111/epi.13387
Cay-Martinez KC, Hickman RA, McKhann Ii GM, Provenzano FA, Sands TT. Rasmussen encephalitis: an update. Semin Neurol. 2020;40(2):201–10.
pubmed: 32185790
doi: 10.1055/s-0040-1708504
Hachiya Y, Uruha A, Kasai-Yoshida E, Shimoda K, Satoh-Shirai I, Kumada S, et al. Rituximab ameliorates anti-N-methyl-D-aspartate receptor encephalitis by removal of short-lived plasmablasts. J Neuroimmunol. 2013;265(1–2):128–30.
pubmed: 24183642
doi: 10.1016/j.jneuroim.2013.09.017
Mahévas M, Michel M, Weill J-C, Reynaud C-A. Long-lived plasma cells in autoimmunity: lessons from B-cell depleting therapy. Front Immunol. 2013;4:494.
pubmed: 24409184
pmcid: 3873528
doi: 10.3389/fimmu.2013.00494
Khosroshahi A, Bloch DB, Deshpande V, Stone JH. Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease. Arthritis Rheum. 2010;62(6):1755–62.
pubmed: 20191576
doi: 10.1002/art.27435
Marino M, Basile U, Spagni G, Napodano C, Iorio R, Gulli F, et al. Long-lasting rituximab-induced reduction of specific-but not total-IgG4 in MuSK-positive myasthenia gravis. Front Immunol. 2020;11:613.
pubmed: 32431692
pmcid: 7214629
doi: 10.3389/fimmu.2020.00613
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179–99.
pubmed: 33324003
doi: 10.1038/s41573-020-00092-2
Sacco KA, Abraham RS. Consequences of B-cell-depleting therapy: hypogammaglobulinemia and impaired B-cell reconstitution. Immunotherapy. 2018;10(8):713–28.
pubmed: 29569510
doi: 10.2217/imt-2017-0178
Filippini G, Kruja J, Del Giovane C. Rituximab for people with multiple sclerosis. Cochrane Database Syst Rev. 2021;11(11):CD013874.
pubmed: 34748215
Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018;83(1):13–26.
pubmed: 29244240
pmcid: 5876115
doi: 10.1002/ana.25119
Sorensen PS, Blinkenberg M. The potential role for ocrelizumab in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord. 2016;9(1):44–52.
pubmed: 26788130
pmcid: 4710102
doi: 10.1177/1756285615601933
Blackburn KM, Denney DA, Hopkins SC, Vernino SA. Low recruitment in a double-blind, placebo-controlled trial of ocrelizumab for autoimmune encephalitis: a case series and review of lessons learned. Neurol Ther. 2022;11:893–903.
pubmed: 35129803
pmcid: 9095811
doi: 10.1007/s40120-022-00327-x
Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394(10206):1352–63.
pubmed: 31495497
doi: 10.1016/S0140-6736(19)31817-3
The ExTINGUISH Trial of Inebilizumab in NMDAR Encephalitis (ExTINGUISH). 2020. https://clinicaltrials.gov/ct2/show/NCT04372615 . Accessed 4 May 2021.
de Weers M, Tai Y-T, van der Veer MS, Bakker JM, Vink T, Jacobs DCH, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8.
pubmed: 21187443
doi: 10.4049/jimmunol.1003032
Scheibe F, Ostendorf L, Prüss H, Radbruch H, Aschman T, Hoffmann S, et al. Daratumumab for treatment-refractory antibody-mediated diseases in neurology. Eur J Neurol. 2022;29(6):1847–54.
pubmed: 35098616
doi: 10.1111/ene.15266
Gable KL, Guptill JT. Antagonism of the neonatal Fc receptor as an emerging treatment for myasthenia Gravis. Front Immunol. 2020;10:3052.
pubmed: 31998320
pmcid: 6965493
doi: 10.3389/fimmu.2019.03052
Nelke C, Spatola M, Schroeter CB, Wiendl H, Lünemann JD. Neonatal Fc receptor-targeted therapies in neurology. Neurotherapeutics. 2022;19(3):729–40.
pubmed: 34997443
pmcid: 9294083
doi: 10.1007/s13311-021-01175-7
Kiessling P, Lledo-Garcia R, Watanabe S, Langdon G, Tran D, Bari M, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci Transl Med. 2017;9:414.
doi: 10.1126/scitranslmed.aan1208
Bril V, Benatar M, Andersen H, Vissing J, Brock M, Greve B, et al. Efficacy and safety of rozanolixizumab in moderate to severe generalized myasthenia Gravis. A phase 2 randomized control trial. Neurology. 2021;96(6):e853–65.
pubmed: 33219142
pmcid: 8105899
Robak T, Kaźmierczak M, Jarque I, Musteata V, Treliński J, Cooper N, et al. Phase 2 multiple-dose study of an FcRn inhibitor, rozanolixizumab, in patients with primary immune thrombocytopenia. Blood Adv. 2020;4(17):4136–46.
pubmed: 32886753
pmcid: 7479959
doi: 10.1182/bloodadvances.2020002003
SRL UB. A study to test the efficacy, safety, and pharmacokinetics of rozanolixizumab in adult study participants with leucine-rich glioma inactivated 1 autoimmune encephalitis. 2021. https://clinicaltrials.gov/ct2/show/NCT04372615 . Accessed 13 Apr 2022.
Howard JF Jr, Bril V, Vu T, Karam C, Peric S, Margania T, et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20(7):526–36.
pubmed: 34146511
doi: 10.1016/S1474-4422(21)00159-9
Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 2008;14(7):748–55.
pubmed: 18542049
doi: 10.1038/nm1763
Alexander T, Sarfert R, Klotsche J, Kühl AA, Rubbert-Roth A, Lorenz HM, et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis. 2015;74(7):1474–8.
pubmed: 25710470
doi: 10.1136/annrheumdis-2014-206016
Scott K, Hayden PJ, Will A, Wheatley K, Coyne I. Bortezomib for the treatment of multiple myeloma. Cochrane Database Syst Rev. 2016;20(4):CD010816.
Shin Y-W, Lee S-T, Kim T-J, Jun J-S, Chu K. Bortezomib treatment for severe refractory anti-NMDA receptor encephalitis. Ann Clin Transl Neurol. 2018;5(5):598–605.
pubmed: 29761122
pmcid: 5945964
doi: 10.1002/acn3.557
Scheibe F, Prüss H, Mengel AM, Kohler S, Nümann A, Köhnlein M, et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology. 2017;88(4):366–70.
pubmed: 28003505
doi: 10.1212/WNL.0000000000003536
Keddie S, Crisp SJ, Blackaby J, Cox A, Coles A, Hart M, et al. Plasma cell depletion with bortezomib in the treatment of refractory N-methyl-d-aspartate (NMDA) receptor antibody encephalitis. Rational developments in neuroimmunological treatment. Eur J Neurol. 2018;25(11):1384–8.
pubmed: 30035842
doi: 10.1111/ene.13759
Turnbull MT, Siegel JL, Becker TL, Stephens AJ, Lopez-Chiriboga AS, Freeman WD. Early bortezomib therapy for refractory anti-NMDA receptor encephalitis. Front Neurol. 2020;11:188.
pubmed: 32292386
pmcid: 7118211
doi: 10.3389/fneur.2020.00188
Dinoto A, Cheli M, Bratina A, Sartori A, Manganotti P. Bortezomib in anti-N-Methyl-d-aspartate-receptor (NMDA-R) encephalitis: a systematic review. J Neuroimmunol. 2021;356: 577586.
pubmed: 33975246
doi: 10.1016/j.jneuroim.2021.577586
Eisenberg R. Chapter 49—immune compromise associated with biologics. In: Sullivan KE, Stiehm ER, editors. Stiehm’s immune deficiencies. Amsterdam: Academic Press; 2014. p. 889–906.
doi: 10.1016/B978-0-12-405546-9.00049-2
Datta S, Singh S, Govindarajan R. Retrospective analysis of eculizumab in patients with acetylcholine receptor antibody-negative myasthenia gravis: a case series. J Neuromusc Dis. 2020;7(3):269–77.
doi: 10.3233/JND-190464
Singh S, Singh H, Datta S, Govindarajan R. Eculizumab in the treatment of seronegative refractory generalized myasthenia gravis. Neurology. 2020;94(Suppl 15):1691.
Howard JF, Utsugisawa K, Benatar M, Murai H, Barohn RJ, Illa I, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16(12):976–86.
pubmed: 29066163
doi: 10.1016/S1474-4422(17)30369-1
Bien CG, Vincent A, Barnett MH, Becker AJ, Blümcke I, Graus F, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain. 2012;135(Pt 5):1622–38.
pubmed: 22539258
doi: 10.1093/brain/aws082
Smets I, Titulaer MJ. Antibody therapies in autoimmune encephalitis. Neurotherapeutics. 2022;19(3):823–31.
pubmed: 35060089
pmcid: 8775146
doi: 10.1007/s13311-021-01178-4
Gill AJ, Venkatesan A. Pathogenic mechanisms in neuronal surface autoantibody-mediated encephalitis. J Neuroimmunol. 2022;15(368): 577867.
doi: 10.1016/j.jneuroim.2022.577867
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspec Biol. 2014;6(10): a016295.
doi: 10.1101/cshperspect.a016295
Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B, Mostarac M, et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol. 2003;171(4):1684–90.
pubmed: 12902466
doi: 10.4049/jimmunol.171.4.1684
Jourdan M, Cren M, Robert N, Bolloré K, Fest T, Duperray C, et al. IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia. 2014;28(8):1647–56.
pubmed: 24504026
doi: 10.1038/leu.2014.61
Lee WJ, Lee ST, Moon J, Sunwoo JS, Byun JI, Lim JA, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics. 2016;13(4):824–32.
pubmed: 27215218
pmcid: 5081109
doi: 10.1007/s13311-016-0442-6
Benucci M, Tramacere L, Infantino M, Manfredi M, Grossi V, Damiani A, et al. Efficacy of tocilizumab in limbic encephalitis with anti-CASPR2 antibodies. Case Rep Neurol Med. 2020;2020:5697670.
pubmed: 32110453
pmcid: 7042499
Krogias C, Hoepner R, Müller A, Schneider-Gold C, Schröder A, Gold R. Successful treatment of anti-caspr2 syndrome by interleukin 6 receptor blockade through tocilizumab. JAMA Neurol. 2013;70(8):1056–9.
pubmed: 23778873
doi: 10.1001/jamaneurol.2013.143
Lee WJ, Lee ST, Shin YW, Lee HS, Shin HR, Kim DY, et al. Teratoma removal, steroid, IVIG, rituximab and tocilizumab (T-SIRT) in Anti-NMDAR encephalitis. Neurotherapeutics. 2021;18(1):474–87.
pubmed: 32880854
doi: 10.1007/s13311-020-00921-7
Randell RL, Adams AV, Van Mater H. Tocilizumab in refractory autoimmune encephalitis: a series of pediatric cases. Pediatric Neurol. 2018;86:66–8.
doi: 10.1016/j.pediatrneurol.2018.07.016
Dinarello CA, Simon A, van der Meer JWM. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–52.
pubmed: 22850787
pmcid: 3644509
doi: 10.1038/nrd3800
Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA. 2000;97(21):11534–9.
pubmed: 11016948
pmcid: 17235
doi: 10.1073/pnas.190206797
Noe FM, Polascheck N, Frigerio F, Bankstahl M, Ravizza T, Marchini S, et al. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis. 2013;59:183–93.
pubmed: 23938763
doi: 10.1016/j.nbd.2013.07.015
Choi CH, Ma SH, Ma KK, Leung H, Mok VC. Super-refractory status epilepticus in autoimmune encephalitis treated with interleukin-1 receptor antagonist, anakinra. Epileptic Disord. 2021;23(3):500–5.
pubmed: 34057410
doi: 10.1684/epd.2021.1283
Brunner HI, Quartier P, Alexeeva E, Constantin T, Koné-Paut I, Marzan K, et al. Efficacy and safety of canakinumab in patients with systemic juvenile idiopathic arthritis with and without fever at baseline: results from an open-label. Active-Treatment Extension Study. Arthritis Rheum. 2020;72(12):2147–58.
doi: 10.1002/art.41436
So A, De Meulemeester M, Pikhlak A, Yücel AE, Richard D, Murphy V, et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 2010;62(10):3064–76.
pubmed: 20533546
doi: 10.1002/art.27600
Baldwin AG, Brough D, Freeman S. Inhibiting the inflammasome: a chemical perspective. J Med Chem. 2016;59(5):1691–710.
pubmed: 26422006
doi: 10.1021/acs.jmedchem.5b01091
Sjöström EO, Culot M, Leickt L, Åstrand M, Nordling E, Gosselet F, et al. Transport study of interleukin-1 inhibitors using a human in vitro model of the blood-brain barrier. Brain Behav Immun Health. 2021;16: 100307.
pubmed: 34589799
pmcid: 8474601
doi: 10.1016/j.bbih.2021.100307
DeSena AD, Do T, Schulert GS. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J Neuroinflamm. 2018;15(1):38.
doi: 10.1186/s12974-018-1063-2
Costagliola G, Depietri G, Michev A, Riva A, Foiadelli T, Savasta S, et al. Targeting inflammatory mediators in epilepsy: a systematic review of its molecular basis and clinical applications. Front Neurol. 2022;13: 741244.
pubmed: 35359659
pmcid: 8961811
doi: 10.3389/fneur.2022.741244
van Oosten BW, Barkhof F, Truyen L, Boringa JB, Bertelsmann FW, von Blomberg BM, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology. 1996;47(6):1531–4.
pubmed: 8960740
doi: 10.1212/WNL.47.6.1531
Kondo T, Fukuta M, Takemoto A, Takami Y, Sato M, Takahashi N, et al. Limbic encephalitis associated with relapsing polychondritis responded to infliximab and maintained its condition without recurrence after discontinuation: a case report and review of the literature. Nagoya J Med Sci. 2014;76(3–4):361–8.
pubmed: 25741046
pmcid: 4345688
Fockaert N, Goffin K, Demaerel P, Van Paesschen W. Infliximab-associated autoimmune limbic encephalitis: a case report. Acta Neurol Belg. 2015;115(2):161–3.
pubmed: 24957678
doi: 10.1007/s13760-014-0322-y
Tofacitinib. Drugs R D. 2010;10(4):271–84.
Jang Y, Lee W-J, Lee H, Chu K, Lee S, Lee S-T. Tofacitinib treatment for refractory autoimmune encephalitis. Epilepsia. 2021;62:e53–9.
pubmed: 33656171
doi: 10.1111/epi.16848
Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15(5):283–94.
pubmed: 25882245
doi: 10.1038/nri3823
Lim J-A, Lee S-T, Moon J, Jun J-S, Park B-S, Byun J-I, et al. New feasible treatment for refractory autoimmune encephalitis: low-dose interleukin-2. J Neuroimmunol. 2016;299:107–11.
pubmed: 27725107
doi: 10.1016/j.jneuroim.2016.09.001
Close R, Bale P, Gallagher K, Ambegaonkar G, Rossor T, Abbassi N, et al. Poster 137 Growing up on biologics: a case report of development of NMDAr encephalitis in a young person with JIA on abatacept. Rheumatology. 2020;59(Supplement_2):ii68.
Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 2007;321(2):509–16.
pubmed: 17289835
doi: 10.1124/jpet.106.111344
Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, et al. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics. 2011;8(2):304–15.
pubmed: 21431948
pmcid: 3101825
doi: 10.1007/s13311-011-0039-z
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res. 2013;103(1):2–30.
pubmed: 23219031
doi: 10.1016/j.eplepsyres.2012.10.001
Yang X-M, Downey JM, Cohen MV, Housley NA, Alvarez DF, Audia JP. The highly selective caspase-1 inhibitor VX-765 provides additive protection against myocardial infarction in rat hearts when combined with a platelet inhibitor. J Cardiovasc Pharmacol Ther. 2017;22(6):574–8.
pubmed: 28399648
pmcid: 5817632
doi: 10.1177/1074248417702890
Li H, Guo Z, Chen J, Du Z, Lu H, Wang Z, et al. Computational research of Belnacasan and new Caspase-1 inhibitor on cerebral ischemia reperfusion injury. Aging (Albany NY). 2022;14(4):1848–64.
pubmed: 35193116
pmcid: 8908936
doi: 10.18632/aging.203907
Flores J, Noël A, Foveau B, Beauchet O, LeBlanc AC. Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat Commun. 2020;11(1):4571.
pubmed: 32917871
pmcid: 7486940
doi: 10.1038/s41467-020-18405-9
Syversen SW, Jørgensen KK, Goll GL, Brun MK, Sandanger Ø, Bjørlykke KH, et al. Effect of therapeutic drug monitoring vs standard therapy during maintenance infliximab therapy on disease control in patients with immune-mediated inflammatory diseases: a randomized clinical trial. JAMA. 2021;326(23):2375–84.
pubmed: 34932077
pmcid: 8693274
doi: 10.1001/jama.2021.21316
Dhamija R, Eckert S, Wirrell E. Ketogenic diet. Can J Neurol Sci. 2013;40(2):158–67.
pubmed: 23419562
doi: 10.1017/S0317167100013676
Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia. 2012;53(9):1503–10.
pubmed: 22812641
doi: 10.1111/j.1528-1167.2012.03592.x
Andrea-Meira I, Romão TT, Pires do Prado HJ, Krüger LT, Pires MEP, da Conceição PO. Ketogenic Diet and Epilepsy: What We Know So Far. Front Neurosci 2019;13:5.
Ułamek-Kozioł M, Czuczwar SJ, Januszewski S, Pluta R. Ketogenic diet and epilepsy. Nutrients. 2019;11:10.
doi: 10.3390/nu11102510
Rudy L, Carmen R, Daniel R, Artemio R, Moisés RO. Anticonvulsant mechanisms of the ketogenic diet and caloric restriction. Epilepsy Res. 2020;168: 106499.
pubmed: 33190066
doi: 10.1016/j.eplepsyres.2020.106499
Murugan M, Boison D. Ketogenic diet, neuroprotection, and antiepileptogenesis. Epilepsy Res. 2020;167: 106444.
pubmed: 32854046
pmcid: 7655615
doi: 10.1016/j.eplepsyres.2020.106444
Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;173(7):1728-41.e13.
pubmed: 29804833
pmcid: 6003870
doi: 10.1016/j.cell.2018.04.027
Peng A, Qiu X, Lai W, Li W, Zhang L, Zhu X, et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 2018;147:102–7.
pubmed: 30291996
doi: 10.1016/j.eplepsyres.2018.09.013
Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, Blanco JR. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Benef Microbes. 2018;9(6):875–81.
pubmed: 30198325
doi: 10.3920/BM2018.0018
Carreño M, Bien CG, Asadi-Pooya AA, Sperling M, Marusic P, Elisak M, et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res. 2017;129:101–5.
pubmed: 28043058
doi: 10.1016/j.eplepsyres.2016.12.010
Rüegg S. EEG bei Autoimmunenzephalitiden. Zeitschr Epileptol. 2020;33(4):278–87.
doi: 10.1007/s10309-020-00355-3
Jean WC, Dalmau J, Ho A, Posner JB. Analysis of the IgG subclass distribution and inflammatory infiltrates in patients with anti-Hu-associated paraneoplastic encephalomyelitis. Neurology. 1994;44(1):140–7.
pubmed: 8290049
doi: 10.1212/WNL.44.1.140
Blaes F, Klotz M, Funke D, Strittmatter M, Kraus J, Kaps M. Disturbance in the serum IgG subclass distribution in patients with anti-Hu positive paraneoplastic neurological syndromes. Eur J Neurol. 2002;9(4):369–72.
pubmed: 12099920
doi: 10.1046/j.1468-1331.2002.00416.x
Sabater L, Gaig C, Gelpi E, Bataller L, Lewerenz J, Torres-Vega E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 2014;13(6):575–86.
pubmed: 24703753
pmcid: 4104022
doi: 10.1016/S1474-4422(14)70051-1
Sabater L, Planagumà J, Dalmau J, Graus F. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome. J Neuroinflamm. 2016;13(1):226.
doi: 10.1186/s12974-016-0689-1
da Silva-Júnior FP, Castro LH, Andrade JQ, Bastos CG, Moreira CH, Valério RM, et al. Serial and prolonged EEG monitoring in anti-N-Methyl-d-Aspartate receptor encephalitis. Clin Neurophysiol. 2014;125(8):1541–4.
pubmed: 24457136
doi: 10.1016/j.clinph.2014.01.001
Kaplan PW, Rossetti AO, Kaplan EH, Wieser HG. Proposition: limbic encephalitis may represent limbic status epilepticus. A review of clinical and EEG characteristics. Epilepsy Behav. 2012;24(1):1–6.
pubmed: 22459869
doi: 10.1016/j.yebeh.2011.11.029
Schmitt SE, Pargeon K, Frechette ES, Hirsch LJ, Dalmau J, Friedman D. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012;79(11):1094–100.
pubmed: 22933737
pmcid: 3525298
doi: 10.1212/WNL.0b013e3182698cd8
Wang J, Wang K, Wu D, Liang H, Zheng X, Luo B. Extreme delta brush guides to the diagnosis of anti-NMDAR encephalitis. J Neurol Sci. 2015;353(1–2):81–3.
pubmed: 25921549
doi: 10.1016/j.jns.2015.04.009
Zhang Y, Liu G, Jiang MD, Li LP, Su YY. Analysis of electroencephalogram characteristics of anti-NMDA receptor encephalitis patients in China. Clin Neurophysiol. 2017;128(7):1227–33.
pubmed: 28527387
doi: 10.1016/j.clinph.2017.04.015
Ueda J, Kawamoto M, Hikiami R, Ishii J, Yoshimura H, Matsumoto R, et al. Serial EEG findings in anti-NMDA receptor encephalitis: correlation between clinical course and EEG. Epileptic Disord. 2017;19(4):465–70.
pubmed: 29160207
doi: 10.1684/epd.2017.0942
Lin N, Huang Y, Jin L, Lu Q, Liu Q, Zhou X, et al. Electroencephalogram and clinical characteristics and correlations in patients with anti-N-Methyl-d-aspartate receptor encephalitis. Clin EEG Neurosci. 2020;51(1):51–60.
pubmed: 31450965
doi: 10.1177/1550059419868919
Steriade C, Hantus S, Moosa ANV, Rae-Grant AD. Extreme delta—with or without brushes: a potential surrogate marker of disease activity in anti-NMDA-receptor encephalitis. Clin Neurophysiol. 2018;129(10):2197–204.
pubmed: 29580710
doi: 10.1016/j.clinph.2018.02.130
Chanson E, Bicilli É, Lauxerois M, Kauffmann S, Chabanne R, Ducray F, et al. Anti-NMDA-R encephalitis: should we consider extreme delta brush as electrical status epilepticus? Neurophysiol Clin. 2016;46(1):17–25.
pubmed: 26922283
doi: 10.1016/j.neucli.2015.12.009
Foff EP, Taplinger D, Suski J, Lopes MB, Quigg M. EEG findings may serve as a potential biomarker for anti-NMDA receptor encephalitis. Clin EEG Neurosci. 2017;48(1):48–53.
pubmed: 27068513
doi: 10.1177/1550059416642660
Jeannin-Mayer S, André-Obadia N, Rosenberg S, Boutet C, Honnorat J, Antoine JC, et al. EEG analysis in anti-NMDA receptor encephalitis: description of typical patterns. Clin Neurophysiol. 2019;130(2):289–96.
pubmed: 30611120
doi: 10.1016/j.clinph.2018.10.017
Miao A, Wang X. Ictal rhythmic alpha sinusoidal waves in 3 cases of anti-NMDAR encephalitis. Clin EEG Neurosci. 2018;49(5):302–5.
pubmed: 29186977
doi: 10.1177/1550059417745185
Limotai C, Denlertchaikul C, Saraya AW, Jirasakuldej S. Predictive values and specificity of electroencephalographic findings in autoimmune encephalitis diagnosis. Epilepsy Behav. 2018;84:29–36.
pubmed: 29738958
doi: 10.1016/j.yebeh.2018.04.007
Gillinder L, Warren N, Hartel G, Dionisio S, O’Gorman C. EEG findings in NMDA encephalitis—a systematic review. Seizure. 2019;65:20–4.
pubmed: 30597400
doi: 10.1016/j.seizure.2018.12.015
Yao L, Yue W, Xunyi W, Jianhong W, Guoxing Z, Zhen H. Clinical features and long-term outcomes of seizures associated with autoimmune encephalitis: a follow-up study in East China. J Clin Neurosci. 2019;68:73–9.
pubmed: 31331752
doi: 10.1016/j.jocn.2019.07.049