Macromolecular Information Transfer.

Artificial Translation Molecular Replication Precision Polymers Sequence-Controlled Polymers Template-Directed Synthesis

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
11 04 2023
Historique:
received: 01 01 2023
medline: 4 4 2023
pubmed: 26 1 2023
entrez: 25 1 2023
Statut: ppublish

Résumé

Macromolecular information transfer can be defined as the process by which a coded monomer sequence is communicated from one macromolecule to another. In such a transfer process, the information sequence can be kept identical, transformed into a complementary sequence or even translated into a different molecular language. Such mechanisms are crucial in biology and take place in DNA→DNA replication, DNA→RNA transcription and RNA→protein translation. In fact, there would be no life on Earth without macromolecular information transfer. Mimicking such processes with synthetic macromolecules would also be of major scientific relevance because it would open up new avenues for technological applications (e.g. data storage and processing) but also for the creation of artificial life. In this important context, this minireview summarizes recent research about information transfer in synthetic oligomers and polymers. Medium- and long-term perspectives are also discussed.

Identifiants

pubmed: 36696359
doi: 10.1002/anie.202300014
doi:

Substances chimiques

Macromolecular Substances 0
DNA 9007-49-2
Polymers 0
RNA 63231-63-0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202300014

Informations de copyright

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Références

J.-M. Lehn, Angew. Chem. Int. Ed. 2013, 52, 2836-2850;
Angew. Chem. 2013, 125, 2906-2921.
 
J.-F. Lutz, M. Ouchi, D. R. Liu, M. Sawamoto, Science 2013, 341, 1238149;
J.-F. Lutz, Isr. J. Chem. 2020, 60, 151-159.
R. Breslow, Science 1982, 218, 532-537.
L. E. Orgel, Nature 1992, 358, 203-209.
J.-F. Lutz, ACS Macro Lett. 2020, 9, 185-189.
 
H. M. Colquhoun, J.-F. Lutz, Nat. Chem. 2014, 6, 455-456;
J.-F. Lutz, Macromolecules 2015, 48, 4759-4767;
M. G. T. A. Rutten, F. W. Vaandrager, J. A. A. W. Elemans, R. J. M. Nolte, Nat. Chem. Rev. 2018, 2, 365-381.
 
A. Al Ouahabi, L. Charles, J.-F. Lutz, J. Am. Chem. Soc. 2015, 137, 5629-5635;
R. K. Roy, A. Meszynska, C. Laure, L. Charles, C. Verchin, J.-F. Lutz, Nat. Commun. 2015, 6, 7237;
S. Martens, A. Landuyt, P. Espeel, B. Devreese, P. Dawyndt, F. Du Prez, Nat. Commun. 2018, 9, 4451-4451;
Z. Huang, Q. Shi, J. Guo, F. Meng, Y. Zhang, Y. Lu, Z. Qian, X. Li, N. Zhou, Z. Zhang, X. Zhu, Nat. Commun. 2019, 10, 1918;
J. M. Lee, M. B. Koo, S. W. Lee, H. Lee, J. Kwon, Y. H. Shim, S. Y. Kim, K. T. Kim, Nat. Commun. 2020, 11, 56;
Q. Shi, X. Zhou, J. Xu, J. Zhang, N. Wang, G. Zhang, J. Hu, S. Liu, Angew. Chem. Int. Ed. 2023, 62, e202214695;
Angew. Chem. 2023, 135, e202214695.
 
A. C. Boukis, K. Reiter, M. Frölich, D. Hofheinz, M. A. R. Meier, Nat. Commun. 2018, 9, 1439;
J. O. Holloway, F. Van Lijsebetten, N. Badi, H. A. Houck, F. E. Du Prez, Adv. Sci. 2020, 7, 1903698.
 
U. S. Gunay, B. E. Petit, D. Karamessini, A. Al Ouahabi, J.-A. Amalian, C. Chendo, M. Bouquey, D. Gigmes, L. Charles, J.-F. Lutz, Chem 2016, 1, 114-126;
D. Karamessini, T. Simon-Yarza, S. Poyer, E. Konishcheva, L. Charles, D. Letourneur, J.-F. Lutz, Angew. Chem. Int. Ed. 2018, 57, 10574-10578;
Angew. Chem. 2018, 130, 10734-10738.
J. M. Berg, J. L. Tymockzo, G. J. Gatto Junior, L. Stryer, Biochemistry, 8th revised ed., W. H. Freeman, New York, 2015.
 
Y.-L. Ying, J. Zhang, R. Gao, Y.-T. Long, Angew. Chem. Int. Ed. 2013, 52, 13154-13161;
Angew. Chem. 2013, 125, 13392-13399;
H. Mutlu, J.-F. Lutz, Angew. Chem. Int. Ed. 2014, 53, 13010-13019;
Angew. Chem. 2014, 126, 13224-13233;
C. Cao, L. F. Krapp, A. Al Ouahabi, N. F. König, N. Cirauqui, A. Radenovic, J.-F. Lutz, M. D. Peraro, Sci. Adv. 2020, 6, eabc2661.
S. F. M. van Dongen, J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte, Angew. Chem. Int. Ed. 2014, 53, 11420-11428;
Angew. Chem. 2014, 126, 11604-11612.
S. A. Benner, Acc. Chem. Res. 2004, 37, 784-797.
V. B. Pinheiro, D. Loakes, P. Holliger, BioEssays 2013, 35, 113-122.
 
Z. Yang, F. Chen, S. G. Chamberlin, S. A. Benner, Angew. Chem. Int. Ed. 2010, 49, 177-180;
Angew. Chem. 2010, 122, 181-184;
D. A. Malyshev, K. Dhami, T. Lavergne, T. Chen, N. Dai, J. M. Foster, I. R. Correa, F. E. Romesberg, Nature 2014, 509, 385-388;
N. G. J. Richards, M. M. Georgiadis, Acc. Chem. Res. 2017, 50, 1375-1382;
S. Hoshika, N. A. Leal, M.-J. Kim, M.-S. Kim, N. B. Karalkar, H.-J. Kim, A. M. Bates, N. E. Watkins, H. A. SantaLucia, A. J. Meyer, S. DasGupta, J. A. Piccirilli, A. D. Ellington, J. SantaLucia, M. M. Georgiadis, S. A. Benner, Science 2019, 363, 884.
X. Li, D. R. Liu, Angew. Chem. Int. Ed. 2004, 43, 4848-4870;
Angew. Chem. 2004, 116, 4956-4979.
R. Naylor, P. T. Gilham, Biochemistry 1966, 5, 2722-2728.
L. E. Orgel, Acc. Chem. Res. 1995, 28, 109-118.
 
T. Inoue, L. E. Orgel, J. Am. Chem. Soc. 1981, 103, 7666-7667;
T. Inoue, L. E. Orgel, J. Mol. Biol. 1982, 162, 201-217.
T. Inoue, G. F. Joyce, K. Grzeskowiak, L. E. Orgel, J. M. Brown, C. B. Reese, J. Mol. Biol. 1984, 178, 669-676.
G. von Kiedrowski, Angew. Chem. Int. Ed. Engl. 1986, 25, 932-935;
Angew. Chem. 1986, 98, 932-934.
 
J. C. Chaput, P. Herdewijn, Angew. Chem. Int. Ed. 2019, 58, 11570-11572;
Angew. Chem. 2019, 131, 11694-11696;
Q. Ma, D. Lee, Y. Q. Tan, G. Wong, Z. Gao, Polym. Chem. 2016, 7, 5199-5216.
M. Egholm, O. Buchardt, P. E. Nielsen, R. H. Berg, J. Am. Chem. Soc. 1992, 114, 1895-1897.
 
P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, Science 1991, 254, 1497-1500;
M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, P. E. Nielsen, Nature 1993, 365, 566-568.
C. Böhler, P. E. Nielsen, L. E. Orgel, Nature 1995, 376, 578-581.
J. G. Schmidt, L. Christensen, P. E. Nielsen, L. E. Orgel, Nucleic Acids Res. 1997, 25, 4792-4796.
 
D. M. Rosenbaum, D. R. Liu, J. Am. Chem. Soc. 2003, 125, 13924-13925;
R. E. Kleiner, Y. Brudno, M. E. Birnbaum, D. R. Liu, J. Am. Chem. Soc. 2008, 130, 4646-4659.
J. M. Heemstra, D. R. Liu, J. Am. Chem. Soc. 2009, 131, 11347-11349.
N. Freund, M. J. L. J. Fürst, P. Holliger, Curr. Opin. Biotechnol. 2022, 74, 129-136.
V. B. Pinheiro, A. I. Taylor, C. Cozens, M. Abramov, M. Renders, S. Zhang, J. C. Chaput, J. Wengel, S.-Y. Peak-Chew, S. H. McLaughlin, P. Herdewijn, P. Holliger, Science 2012, 336, 341-344.
G. Houlihan, S. Arangundy-Franklin, B. T. Porebski, N. Subramanian, A. I. Taylor, P. Holliger, Nat. Chem. 2020, 12, 683-690.
R. Issac, Y.-W. Ham, J. Chmielewski, Curr. Opin. Struct. Biol. 2001, 11, 458-463.
D. H. Lee, J. R. Granja, J. A. Martinez, K. Severin, M. R. Ghadiri, Nature 1996, 382, 525-528.
 
A. Robertson, A. J. Sinclair, D. Philp, Chem. Soc. Rev. 2000, 29, 141-152;
A. Vidonne, D. Philp, Eur. J. Org. Chem. 2009, 593-610;
G. Clixby, L. Twyman, Org. Biomol. Chem. 2016, 14, 4170-4184;
P. Adamski, M. Eleveld, A. Sood, Á. Kun, A. Szilágyi, T. Czárán, E. Szathmáry, S. Otto, Nat. Chem. Rev. 2020, 4, 386-403.
D. Núñez-Villanueva, C. A. Hunter, Chem. Commun. 2022, 58, 11005-11008.
Hybridization shall be distinguished from conventional polymer-polymer complexation, in which several polymer chains interact via random non-covalent interactions.
 
A. P. Bisson, F. J. Carver, C. A. Hunter, J. P. Waltho, J. Am. Chem. Soc. 1994, 116, 10292-10293;
A. P. Bisson, F. J. Carver, D. S. Eggleston, R. C. Haltiwanger, C. A. Hunter, D. L. Livingstone, J. F. McCabe, C. Rotger, A. E. Rowan, J. Am. Chem. Soc. 2000, 122, 8856-8868;
J. A. Swain, G. Iadevaia, C. A. Hunter, J. Am. Chem. Soc. 2018, 140, 11526-11536.
V. Berl, I. Huc, R. G. Khoury, M. J. Krische, J.-M. Lehn, Nature 2000, 407, 720.
U. Koert, M. M. Harding, J.-M. Lehn, Nature 1990, 346, 339-342.
H. Ito, Y. Furusho, T. Hasegawa, E. Yashima, J. Am. Chem. Soc. 2008, 130, 14008-14015.
 
B. Gong, Y. Yan, H. Zeng, E. Skrzypczak-Jankunn, Y. W. Kim, J. Zhu, H. Ickes, J. Am. Chem. Soc. 1999, 121, 5607-5608;
H. Zeng, R. S. Miller, R. A. Flowers, B. Gong, J. Am. Chem. Soc. 2000, 122, 2635-2644.
 
B. Gong, Polym. Int. 2007, 56, 436-443;
B. Gong, Acc. Chem. Res. 2012, 45, 2077-2087.
A. Marquis, V. Smith, J. Harrowfield, J.-M. Lehn, H. Herschbach, R. Sanvito, E. Leize-Wagner, A. Van Dorsselaer, Chem. Eur. J. 2006, 12, 5632-5641.
 
M. Kurlemann, B. J. Ravoo, Beilstein J. Org. Chem. 2014, 10, 2428-2440;
Y. Liu, F. C. Parks, W. Zhao, A. H. Flood, J. Am. Chem. Soc. 2018, 140, 15477-15486.
 
A. E. Stross, G. Iadevaia, D. Núñez-Villanueva, C. A. Hunter, J. Am. Chem. Soc. 2017, 139, 12655-12663;
P. Troselj, P. Bolgar, P. Ballester, C. A. Hunter, J. Am. Chem. Soc. 2021, 143, 8669-8678.
 
F. T. Szczypiński, C. A. Hunter, Chem. Sci. 2019, 10, 2444-2451;
D. Rosa-Gastaldo, V. Pečiukėnas, C. A. Hunter, L. Gabrielli, Org. Biomol. Chem. 2021, 19, 8947-8954.
J.-M. Lehn, Prog. Polym. Sci. 2005, 30, 814-831.
C. S. Hartley, E. L. Elliott, J. S. Moore, J. Am. Chem. Soc. 2007, 129, 4512-4513.
 
T. Wei, J. H. Jung, T. F. Scott, J. Am. Chem. Soc. 2015, 137, 16196-16202;
T. Wei, J. C. Furgal, J. H. Jung, T. F. Scott, Polym. Chem. 2017, 8, 520-527.
S. C. Leguizamon, T. F. Scott, Nat. Commun. 2020, 11, 784.
 
K. R. Strom, J. W. Szostak, N. Prywes, J. Org. Chem. 2019, 84, 3754-3761;
K. R. Strom, J. W. Szostak, J. Org. Chem. 2020, 85, 13929-13938;
K. R. Strom, J. W. Szostak, J. Am. Chem. Soc. 2022, 144, 18350-18358.
D. Núñez-Villanueva, C. A. Hunter, Acc. Chem. Res. 2021, 54, 1298-1306.
D. Núñez-Villanueva, M. Ciaccia, G. Iadevaia, E. Sanna, C. A. Hunter, Chem. Sci. 2019, 10, 5258-5266.
D. Núñez-Villanueva, C. A. Hunter, J. Am. Chem. Soc. 2022, 144, 17307-17316.
M. Ouchi, Y. Hibi, T. Arima, D. Hayata, M. Sawamoto, Sequence-Controlled Polymers: Synthesis, Self-Assembly, and Properties, Vol. 1170, American Chemical Society, Washington, 2014, pp. 149-160.
 
P. K. Lo, H. F. Sleiman, J. Am. Chem. Soc. 2009, 131, 4182-4183;
R. McHale, R. K. O'Reilly, Macromolecules 2012, 45, 7665-7675.
W. Chen, G. B. Schuster, J. Am. Chem. Soc. 2013, 135, 4438-4449.
Z. Chen, D. R. Liu, Sequence-Controlled Polymers, Wiley-VCH, Weinheim, 2018, pp. 49-90.
 
B. Datta, G. B. Schuster, A. McCook, S. C. Harvey, K. Zakrzewska, J. Am. Chem. Soc. 2006, 128, 14428-14429;
B. Datta, G. B. Schuster, J. Am. Chem. Soc. 2008, 130, 2965-2973.
 
Y. He, D. R. Liu, Nat. Nanotechnol. 2010, 5, 778-782;
J. Niu, R. Hili, D. R. Liu, Nat. Chem. 2013, 5, 282-292.
B. Lewandowski, G. De Bo, J. W. Ward, M. Papmeyer, S. Kuschel, M. J. Aldegunde, P. M. E. Gramlich, D. Heckmann, S. M. Goldup, D. M. D'Souza, A. E. Fernandes, D. A. Leigh, Science 2013, 339, 189-193.
J. D. Farmer, S. A. Kauffman, N. H. Packard, Phys. D 1986, 22, 50-67.

Auteurs

Svetlana Samokhvalova (S)

Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France.

Jean-François Lutz (JF)

Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Animals Huntington Disease Mitochondria Neurons Mice
DNA Methylation Humans DNA Animals Machine Learning

Classifications MeSH