Fluorescent GD2 analog for single-molecule imaging.
GD2
Ganglioside
Lipid raft
Single-molecule imaging
Journal
Glycoconjugate journal
ISSN: 1573-4986
Titre abrégé: Glycoconj J
Pays: United States
ID NLM: 8603310
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
30
11
2022
accepted:
13
01
2023
revised:
06
01
2023
pubmed:
27
1
2023
medline:
23
3
2023
entrez:
26
1
2023
Statut:
ppublish
Résumé
Ganglioside GD2 is associated with the proliferation and migration of breast cancer cells. However, the precise role of GD2 is unclear because its tendency to form dynamic and transient domains in cell plasma membranes (PMs), called lipid rafts, makes it difficult to observe. Previously, we developed fluorescent analogs of gangliosides (e.g., GM3 and GM1), which enabled the observation of lipid raft formation for the first time using single-molecule imaging. In this report, we describe the first chemical synthesis of a fluorescent ganglioside, GD2. A biophysical analysis of the synthesized analog revealed its raft-philic character, suggesting its potential to aid single-molecule imaging-based investigations into raft-associated interactions.
Identifiants
pubmed: 36701103
doi: 10.1007/s10719-023-10102-1
pii: 10.1007/s10719-023-10102-1
doi:
Substances chimiques
ganglioside, GD2
65988-71-8
Gangliosides
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
247-257Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Lopez, P.H., Schnaar, R.L.: Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol 19, 549–557 (2009). https://doi.org/10.1016/j.sbi.2009.06.001
doi: 10.1016/j.sbi.2009.06.001
pubmed: 19608407
pmcid: 2763983
Haselhorst, T., Fleming, F.E., Dyason, J.C., Hartnell, R.D., Yu, X., Holloway, G., Santegoets, K., Kiefel, M.J., Blanchard, H., Coulson, B.S., von Itzstein, M.: Sialic acid dependence in rotavirus host cell invasion. Nat. Chem. Biol 5, 91–93 (2009). https://doi.org/10.1038/nchembio.134
doi: 10.1038/nchembio.134
pubmed: 19109595
Stencel-Baerenwald, J.E., Reiss, K., Reiter, D.M., Stehle, T., Dermody, T.S.: The sweet spot: defining virus–sialic acid interactions. Nat. Rev. Microbiol 12, 739–749 (2014). https://doi.org/10.1038/nrmicro3346
doi: 10.1038/nrmicro3346
pubmed: 25263223
pmcid: 4791167
Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997). https://doi.org/10.1038/42408
doi: 10.1038/42408
pubmed: 9177342
Simons, K., Gerl, M.J.: Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell. Biol 11, 688–699 (2010). https://doi.org/10.1038/nrm2977
doi: 10.1038/nrm2977
pubmed: 20861879
Suzuki, K.G.N., Kasai, R.S., Hirosawa, K.M., Nemoto, Y.L., Ishibashi, M., Miwa, Y., Fujiwara, T.K., Kusumi, A.: Transient GPI-anchored protein homodimers are units for raft organization and function. Nat. Chem. Biol 8, 774–783 (2012). https://doi.org/10.1038/nchembio.1028
doi: 10.1038/nchembio.1028
pubmed: 22820419
Komura, N., Suzuki, K.G.N., Ando, H., Konishi, M., Koikeda, M., Imamura, A., Chadda, R., Fujiwara, T.K., Tsuboi, H., Sheng, R., Cho, W., Furukawa, K., Furukawa, K., Yamauchi, Y., Ishida, H., Kusumi, A., Kiso, M.: Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol 12, 402–410 (2016). https://doi.org/10.1038/nchembio.2059
doi: 10.1038/nchembio.2059
pubmed: 27043189
Konishi, M., Komura, N., Hirose, Y., Suganuma, Y., Tanaka, H.-N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of fluorescent ganglioside GD3 and GQ1b analogs for elucidation of raft-associated interactions. J. Org. Chem 85, 15998–16013 (2020). https://doi.org/10.1021/acs.joc.0c01493
doi: 10.1021/acs.joc.0c01493
pubmed: 32951428
Takahashi, M., Komura, N., Yoshida, Y., Yamaguchi, E., Hasegawa, A., Tanaka, H.-N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of lacto-series ganglioside fluorescent probe using late-stage sialylation and behavior analysis with single-molecule imaging. RSC Chem. Biol 3, 868–885 (2022). https://doi.org/10.1039/D2CB00083K
doi: 10.1039/D2CB00083K
pubmed: 35866169
pmcid: 9257605
Battula, V.L., Shi, Y., Evans, K.W., Wang, R.Y., Spaeth, E.L., Jacamo, R.O., Guerra, R., Sahin, A.A., Marini, F.C., Hortobagyi, G., Mani, S.A., Andreeff, M.: Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J. Clin. Invest 122, 2066–2078 (2012). https://doi.org/10.1172/JCI59735
doi: 10.1172/JCI59735
pubmed: 22585577
pmcid: 3591166
Nazha, B., Inal, C., Owonikoko, T.K.: Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front. Oncol 10, 1000 (2020). https://doi.org/10.3389/fonc.2020.01000
doi: 10.3389/fonc.2020.01000
pubmed: 32733795
pmcid: 7358363
Koikeda, M., Komura, N., Tanaka, H.-N., Imamura, A., Ishida, H., Kiso, M., Ando, H.: Synthesis of ganglioside analogs containing fluorescently labeled GalNAc for single-molecule imaging. J. Carbohydr. Chem 38, 509–527 (2019). https://doi.org/10.1080/07328303.2019.1609019
doi: 10.1080/07328303.2019.1609019
Imamura, A., Ando, H., Ishida, H., Kiso, M.: Ganglioside GQ1b: efficient total synthesis and the expansion to synthetic derivatives to elucidate its biological roles. J. Org. Chem 74, 3009–3023 (2009). https://doi.org/10.1021/jo8027888
doi: 10.1021/jo8027888
pubmed: 19296672
Tamai, H., Ando, H., Tanaka, H.-N., Hosoda-Yabe, R., Yabe, T., Ishida, H., Kiso, M.: The total synthesis of the neurogenic ganglioside LLG-3 isolated from the starfish Linckia laevigata Angew Chem. Int. Ed 50, 2330–2333 (2011). https://doi.org/10.1002/anie.201006035
doi: 10.1002/anie.201006035
Nakashima, S., Ando, H., Saito, R., Tamai, H., Ishida, H., Kiso, M.: Efficiently synthesizing lacto-ganglio-series gangliosides by using a glucosyl ceramide cassette approach: the total synthesis of ganglioside X2. Chem Asian J 7, 1041–1051 (2012). https://doi.org/10.1002/asia.201100928
doi: 10.1002/asia.201100928
pubmed: 22334413
Asano, S., Tanaka, H.-N., Imamura, A., Ishida, H., Ando, H.: p-tert-butyl groups improve the utility of aromatic protecting groups in carbohydrate synthesis. Org. Lett. 21, 4197–4200 (2019). https://doi.org/10.1021/acs.orglett.9b01372
doi: 10.1021/acs.orglett.9b01372
pubmed: 31145627
Ishida, H., Ohta, Y., Tsukada, Y., Kiso, M., Hasegawa, A.: A synthetic approach to polysialogangliosides containing α-sialyl-(2→8)-sialic acid: total synthesis of ganglioside GD3. Carbohydr. Res 246, 75–88 (1993). https://doi.org/10.1016/0008-6215(93)84025-2
doi: 10.1016/0008-6215(93)84025-2
pubmed: 8370046
Kenworthy, A.K., Nichols, B.J., Remmert, C.L., Hendirix, G.M., Kumar, M., Zimmerberg, J., Lippincott-Schwartz, J.: Dynamics of putative raft-associated proteins at the cell surface. J. Cell. Biol 165, 735–746 (2004). https://doi.org/10.1083/jcb.200312170
doi: 10.1083/jcb.200312170
pubmed: 15173190
pmcid: 2172371
Asano, S., Pal, R., Tanaka, H.-N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of fluorescently labeled SSEA-3, SSEA-4, and Globo-H glycosphingolipids for elucidating molecular interactions in the cell membrane. Int. J. Mol. Sci 20, 6187 (2019). https://doi.org/10.3390/ijms20246187
doi: 10.3390/ijms20246187
pubmed: 31817926
pmcid: 6941013
Tanaka, K.A.K., Suzuki, K.G.N., Shirai, Y.M., Shibutani, S.T., Miyahara, M.S.H., Tsuboi, H., Yahara, M., Yoshimura, A., Mayor, S., Fujiwara, T.K., Kusumi, A.: Membrane molecules mobile even after chemical fixation. Nat. Methods 7, 865–866 (2010). https://doi.org/10.1038/nmeth.f.314
doi: 10.1038/nmeth.f.314
pubmed: 20881966