Transcriptomics and co-expression network analysis revealing candidate genes for the laccase activity of Trametes gibbosa.
Laccase
Mitochondria
WGCNA
White-rot fungi
Journal
BMC microbiology
ISSN: 1471-2180
Titre abrégé: BMC Microbiol
Pays: England
ID NLM: 100966981
Informations de publication
Date de publication:
26 01 2023
26 01 2023
Historique:
received:
23
07
2022
accepted:
08
12
2022
entrez:
26
1
2023
pubmed:
27
1
2023
medline:
31
1
2023
Statut:
epublish
Résumé
Trametes gibbosa, which is a white-rot fungus of the Polyporaceae family found in the cold temperate zone, causes spongy white rot on wood. Laccase can oxidize benzene homologs and is one of the important oxidases for white rot fungi to degrade wood. However, the pathway of laccase synthesis in white rot fungi is unknown. The peak value of laccase activity reached 135.75 U/min/L on the 9th day. For laccase activity and RNA-seq data, gene expression was segmented into 24 modules. Turquoise and blue modules had greater associations with laccase activity (positively 0.94 and negatively -0.86, respectively). For biology function, these genes were concentrated on the cell cycle, citrate cycle, nicotinate, and nicotinamide metabolism, succinate dehydrogenase activity, flavin adenine dinucleotide binding, and oxidoreductase activity which are highly related to the laccase synthetic pathway. Among them, gene_8826 (MW199767), gene_7458 (MW199766), gene_61 (MW199765), gene_1741 (MH257605), and gene_11087 (MK805159) were identified as central genes. Laccase activity steadily increased in wood degradation. Laccase oxidation consumes oxygen to produce hydrogen ions and water during the degradation of wood. Some of the hydrogen ions produced can be combined by Flavin adenine dinucleotide (FAD) to form reduced Flavin dinucleotide (FADH2), which can be transmitted. Also, the fungus was starved of oxygen throughout fermentation, and the NADH and FADH2 are unable to transfer hydrogen under hypoxia, resulting in the inability of NAD and FAD to regenerate and inhibit the tricarboxylic acid cycle of cells. These key hub genes related to laccase activity play important roles in the molecular mechanisms of laccase synthesis for exploring industrial excellent strains.
Sections du résumé
BACKGROUND
Trametes gibbosa, which is a white-rot fungus of the Polyporaceae family found in the cold temperate zone, causes spongy white rot on wood. Laccase can oxidize benzene homologs and is one of the important oxidases for white rot fungi to degrade wood. However, the pathway of laccase synthesis in white rot fungi is unknown.
RESULTS
The peak value of laccase activity reached 135.75 U/min/L on the 9th day. For laccase activity and RNA-seq data, gene expression was segmented into 24 modules. Turquoise and blue modules had greater associations with laccase activity (positively 0.94 and negatively -0.86, respectively). For biology function, these genes were concentrated on the cell cycle, citrate cycle, nicotinate, and nicotinamide metabolism, succinate dehydrogenase activity, flavin adenine dinucleotide binding, and oxidoreductase activity which are highly related to the laccase synthetic pathway. Among them, gene_8826 (MW199767), gene_7458 (MW199766), gene_61 (MW199765), gene_1741 (MH257605), and gene_11087 (MK805159) were identified as central genes.
CONCLUSION
Laccase activity steadily increased in wood degradation. Laccase oxidation consumes oxygen to produce hydrogen ions and water during the degradation of wood. Some of the hydrogen ions produced can be combined by Flavin adenine dinucleotide (FAD) to form reduced Flavin dinucleotide (FADH2), which can be transmitted. Also, the fungus was starved of oxygen throughout fermentation, and the NADH and FADH2 are unable to transfer hydrogen under hypoxia, resulting in the inability of NAD and FAD to regenerate and inhibit the tricarboxylic acid cycle of cells. These key hub genes related to laccase activity play important roles in the molecular mechanisms of laccase synthesis for exploring industrial excellent strains.
Identifiants
pubmed: 36703110
doi: 10.1186/s12866-022-02727-3
pii: 10.1186/s12866-022-02727-3
pmc: PMC9878871
doi:
Substances chimiques
Laccase
EC 1.10.3.2
Flavin-Adenine Dinucleotide
146-14-5
Protons
0
Oxygen
S88TT14065
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
29Subventions
Organisme : Fundamental Research Funds for the Central Universities
ID : 2572021AW20
Informations de copyright
© 2023. The Author(s).
Références
Aging (Albany NY). 2019 Jul 15;11(13):4736-4756
pubmed: 31306099
Funct Integr Genomics. 2018 May;18(3):327-339
pubmed: 29532338
Molecules. 2016 Nov 17;21(11):
pubmed: 27869681
Biotechnol Biofuels. 2018 Jul 23;11:201
pubmed: 30061923
Biotechnol Res Int. 2014;2014:127848
pubmed: 24719770
J Mol Microbiol Biotechnol. 2018;28(1):1-13
pubmed: 29486469
Genes (Basel). 2019 Dec 16;10(12):
pubmed: 31888265
J Hazard Mater. 2021 Jun 15;412:125197
pubmed: 33540263
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
Genome Biol. 2013 Apr 25;14(4):R36
pubmed: 23618408
Mycologia. 2022 Sep-Oct;114(5):841-856
pubmed: 35834675
Mycologia. 2015 Nov-Dec;107(6):1105-19
pubmed: 26297778
Cell Mol Life Sci. 2010 Feb;67(3):369-85
pubmed: 19844659
Redox Biol. 2017 Aug;12:745-754
pubmed: 28412652
Appl Microbiol Biotechnol. 2006 Jul;71(4):493-501
pubmed: 16283298
Cell. 2009 Mar 20;136(6):1073-84
pubmed: 19303850
J Proteome Res. 2008 Jun;7(6):2342-50
pubmed: 18435559
Redox Biol. 2019 Jun;24:101229
pubmed: 31153040
Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12838-43
pubmed: 9789001
Appl Microbiol Biotechnol. 2003 Dec;63(2):174-81
pubmed: 12898062
Appl Environ Microbiol. 1998 May;64(5):1766-72
pubmed: 9572949
Biotechnol Lett. 2015 Oct;37(10):2055-62
pubmed: 26112324
Int J Mol Sci. 2019 Mar 04;20(5):
pubmed: 30836695
Front Immunol. 2020 Jul 16;11:1281
pubmed: 32765489
PLoS One. 2014 Jan 22;9(1):e86683
pubmed: 24466198
Sci Rep. 2017 Jul 6;7(1):4748
pubmed: 28684781
Bioeng Bugs. 2010 Jul-Aug;1(4):252-62
pubmed: 21327057
J Environ Manage. 2019 Apr 15;236:581-590
pubmed: 30771677
Oncol Rep. 2015 Mar;33(3):1434-42
pubmed: 25591797
Folia Biol (Praha). 2003;49(6):211-6
pubmed: 14748434
Biotechnol Bioeng. 2013 Oct;110(10):2616-23
pubmed: 23613173
Biodegradation. 2008 Nov;19(6):771-83
pubmed: 18373237
FEBS J. 2015 Apr;282(7):1190-213
pubmed: 25649492
PLoS One. 2012;7(9):e45887
pubmed: 23029295
FEMS Microbiol Rev. 2006 Mar;30(2):215-42
pubmed: 16472305
F1000Res. 2013 Sep 16;2:188
pubmed: 24555089
Curr Opin Genet Dev. 2005 Apr;15(2):185-90
pubmed: 15797201
Insect Biochem Mol Biol. 2004 Jan;34(1):29-41
pubmed: 14723895
Contrib Microbiol. 2008;15:164-187
pubmed: 18511861
Enzyme Microb Technol. 2013 Jan 10;52(1):1-12
pubmed: 23199732
Appl Environ Microbiol. 2012 Sep;78(18):6483-90
pubmed: 22773628
Environ Microbiol. 2021 Oct;23(10):5716-5732
pubmed: 33538380
FEMS Microbiol Rev. 2017 Nov 1;41(6):941-962
pubmed: 29088355
Science. 2016 May 27;352(6289):1098-101
pubmed: 27127235
Enzyme Microb Technol. 2017 Aug;103:34-41
pubmed: 28554383
Cell Res. 2011 Mar;21(3):396-420
pubmed: 21358755
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53
pubmed: 23754401
Appl Microbiol Biotechnol. 2012 Apr;94(2):339-51
pubmed: 22391967
Dev Comp Immunol. 2016 Dec;65:159-168
pubmed: 27431928
J Microbiol. 2015 Apr;53(4):236-42
pubmed: 25636423
Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045
pubmed: 27924042
Fungal Genet Biol. 2008 May;45(5):638-45
pubmed: 18308593
Biochem Biophys Res Commun. 1999 Dec 29;266(3):690-8
pubmed: 10603307
Fungal Genet Biol. 1999 Mar;26(2):99-117
pubmed: 10328981