Effect of salinity on ccmfn gene RNA editing of mitochondria in wild barley and uncommon types of RNA editing.
Ccmfn
RNA editing
Salinity stress
Wild barley
Journal
Functional & integrative genomics
ISSN: 1438-7948
Titre abrégé: Funct Integr Genomics
Pays: Germany
ID NLM: 100939343
Informations de publication
Date de publication:
27 Jan 2023
27 Jan 2023
Historique:
received:
10
11
2022
accepted:
23
01
2023
revised:
22
01
2023
entrez:
27
1
2023
pubmed:
28
1
2023
medline:
1
2
2023
Statut:
epublish
Résumé
The primary function of mitochondria is cellular respiration and energy production. Cytochrome C complex is an essential complex that transports electrons in the respiratory chain between complex III and complex IV. One of this complex's main subunits is CcmFN, which is believed to be crucial for holocytochrome assembly. In wild-type plant Hordeum vulgare subsp. spontaneum, four ccmfn cDNAs are subjected to high salt stress (500 mM salinity), 0 h (or control) (GenBank accession no. ON764850), after 2 h (GenBank accession no. ON7648515), after 12 h (GenBank accession no. ON764852), and after 24 h (GenBank accession no. ON764853) and mtDNA of ccmfn gene (GenBank accession no. ON764854). Using raw data from RNA-seq, 47 sites with nucleotide and amino acid modifications were detected. There were ten different RNA editing types, with most of them are C to U. Unusual editing types in plants have also been found, such as A to C, C to A, A to G, A to U, T to A, T to C, C to G, G to C, and T to G. High levels of editing were observed in control as well as treatments of salinity stress. Amino acid changes were found in 43 sites; nearly all showed hydrophilic to hydrophilic alterations. Only C749 showed regulation under salinity stress.
Identifiants
pubmed: 36707470
doi: 10.1007/s10142-023-00978-5
pii: 10.1007/s10142-023-00978-5
doi:
Substances chimiques
RNA
63231-63-0
Amino Acids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
50Subventions
Organisme : King Abdulaziz University
ID : G: 51-130-1440
Organisme : King Abdulaziz University
ID : G: 51-130-1440
Organisme : King Abdulaziz University
ID : G: 51-130-1440
Organisme : King Abdulaziz University
ID : G: 51-130-1440
Organisme : King Abdulaziz University
ID : G: 51-130-1440
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Bahieldin A, Atef A, Sabir JS, Gadalla NO, Edris S, Alzohairy AM, Radhwan NA, Baeshen MN, Ramadan AM, Eissa HF (2015) RNA-seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. Comptes rendus biologies. 338(5):285–297
Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 46(6):819–826
Bentolila S, Oh J, Hanson MR, Bukowski R (2013) Comprehensive high-resolution analysis of the role of an arabidopsis gene family in RNA editing. PLoS genetics. 9(6):e1003584
Bi C, Lu N, Xu Y, He C, Lu Z (2020) Characterization and analysis of the mitochondrial genome of common bean (Phaseolus vulgaris) by comparative genomic approaches. Int J Molecular Sci 21(11):3778
Brenner WG, Mader M, Müller NA, Hoenicka H, Schroeder H, Zorn I, Fladung M, Kersten B (2019) High level of conservation of mitochondrial RNA editing sites among four populus species G3. Genes Genomes Genetics. 9(3):709–717
Castandet B, Araya A (2011) RNA editing in plant organelles Why make it easy? Biochemistry (Moscow) 76(8):924–931
Chen T-C, Liu Y-C, Wang X, Wu C-H, Huang C-H, Chang C-C (2017) Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp formosana. Botanical Stud 58(1):1–14
Edera AA, Gandini CL, Sanchez-Puerta MV (2018) Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. Plant molecular biology. 97(3):215–231
Germain A, Hanson MR, Bentolila S (2015) High-throughput quantification of chloroplast RNA editing extent using multiplex RT-PCR mass spectrometry. The Plant J 83(3):546–554
Giegé P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Nat Acad Sci 96(26):15324–15329
Giegé P, Rayapuram N, Meyer EH, Grienenberger JM, Bonnard G (2004) Ccmfc involved in cytochrome c maturation is present in a large sized complex in wheat mitochondria. FEBS letters. 563(1–3):165–169
Giudice CL, Hernández I, Ceci LR, Pesole G, Picardi E (2019) RNA editing in plants: a comprehensive survey of bioinformatics tools and databases. Plant Physiol Biochem 137:53–61
Gray M (2003) Diversity and evolution of mitochondrial RNA editing systems. IUBMB life. 55(4–5):227–233
Hajrah NH, Obaid AY, Atef A, Ramadan AM, Arasappan D, Nelson CA, Edris S, Mutwakil MZ, Alhebshi A, Gadalla NO (2017) Transcriptomic analysis of salt stress responsive genes in Rhazya stricta. PloS one. 12(5):e0177589
Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic acids Res 31(20):5907–5916
Hisano H, Tsujimura M, Yoshida H, Terachi T, Sato K (2016) Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare). BMC genomics 17(1):1–12
Ichinose M, Sugita M (2017) RNA editing and its molecular mechanism in plant organelles. Genes 8(1):5
Kim B, Kim K, Yang T-J, Kim S (2016) Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmf n gene split. Curr Genet 62(4):873–885
Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature. 433(7023):326–330
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001). Methods 25(4):402-8. https://doi.org/10.1006/meth.2001.1262
Meng Y, Chen D, Jin Y, Mao C, Wu P, Chen M (2010) RNA editing of nuclear transcripts in Arabidopsis thaliana. BMC genomics 11(4):1–7
Ramadan AM (2020) Salinity effects on nad3 gene RNA editing of wild barley mitochondria. Mol Biol Rep 47(5):3857–3865
Ramadan AM, Alnufaei AA, Khan TK, Ali HM, Eissa HF, Hassan SM (2021) The first report of RNA U to C or G editing in the mitochondrial NADH dehydrogenase subunit 5 (NAD5) transcript of wild barley. Mol Biol Rep 48(8):6057–6064
Rayapuram N, Hagenmuller J, Grienenberger J-M, Giegé P, Bonnard G (2007) Atccma interacts with atccmb to form a novel mitochondrial ABC transporter involved in cytochrome c maturation in arabidopsis. J Biol Chem 282(29):21015–21023
Rayapuram N, Hagenmuller J, Grienenberger JM, Bonnard G, Giegé P (2008) The three mitochondrial encoded ccmf proteins form a complex that interacts with CCMH and c-type apocytochromes in arabidopsis. J Biol Chem 283(37):25200–25208
Rurek M, Szklarczyk M, Adamczyk N, Michalik B, Augustyniak H (2001) Differences in editing of mitochondrial NAD3 transcripts from CMS and fertile carrots. Acta Biochimica Polonica. 48(3):711–717
Ruwe H, Castandet B, Schmitz-Linneweber C, Stern DB (2013) Arabidopsis chloroplast quantitative editotype. FEBS letters. 587(9):1429–1433
Sabir JS, Arasappan D, Bahieldin A, Abo-Aba S, Bafeel S, Zari TA, Edris S, Shokry AM, Gadalla NO, Ramadan AM, Atef A, Al-Kordy MA, El-Domyati FM, Jansen RK (2014) Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and close phylogenetic relationships among cultivars. PLoS One 9(4):e94158
Sechet J, Roux C, Plessis A, Effroy D, Frey A, Perreau F, Biniek C, Krieger-Liszkay A, Macherel D, North HM (2015) The ABA-deficiency suppressor locus HAS2 encodes the PPR protein LOI1/MEF11 involved in mitochondrial RNA editing. Molecular Plant 8(4):644–656
Si Ishii, Suzuki S, Norden-Krichmar TM, Tenney A, Chain PS, Scholz MB, Nealson KH, Bretschger O (2013) A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nat Commun 4(1):1–10
Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan BC (2015) Empty pericarp7 encodes a mitochondrial E–subgroup pentatricopeptide repeat protein that is required for ccm FN editing, mitochondrial function and seed development in maize. The Plant J 84(2):283–295
Sun Y, Law Y-S, Cheng S, Lim BL (2017) RNA editing of cytochrome c maturation transcripts is responsive to the energy status of leaf cells in Arabidopsis thaliana. Mitochondrion. 35:23–34
Szandar K, Krawczyk K, Myszczyński K, Ślipiko M, Sawicki J, Szczecińska M (2022) Breaking the limits-multichromosomal structure of an early eudicot pulsatilla patens mitogenome reveals extensive RNA-editing, longest repeats and chloroplast derived regions among sequenced land plant mitogenomes. BMC Plant Biol 22(1):1–15
Tac HA, Koroglu M, Sezerman U (2021) RDDSVM: accurate prediction of A-to-I RNA editing sites from sequence using support vector machines. Funct Integr Genomics 21:633–643. https://doi.org/10.1007/s10142-021-00805-9
doi: 10.1007/s10142-021-00805-9
Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A (2008) The process of RNA editing in plant mitochondria. Mitochondrion. 8(1):35–46
Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352
Tan Z-J, Chen S-J (2011) Salt contribution to RNA tertiary structure folding stability. Biophysical Journal 101(1):176–187
Tseng C-C, Lee C-J, Chung Y-T, Sung T-Y, Hsieh M-H (2013) Differential regulation of arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. Plant Mol Biol 82(4):375–392
Tukey J (1949) Comparing individual means in the analysis of variance". Biometrics 5(2):99–114
Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15(1):57–61
Wang M, Cui L, Feng K, Deng P, Du X, Wan F, Weining S, Nie X (2015) Comparative analysis of Asteraceae chloroplast genomes: structural organization, RNA editing and evolution. Plant Mol Biol Rep 33(5):1526–1538
Wintz H, Hanson MR (1991) A termination codon is created by RNA editing in the petunia mitochondrial ATP9 gene transcript. Curr Genet 19(1):61–64
Wu B, Chen H, Shao J, Zhang H, Wu K, Liu C (2017) Identification of symmetrical RNA editing events in the mitochondria of Salvia miltiorrhiza by strand-specific RNA sequencing. Sci Rep 7(1):1–11
Xiao H, Zhang Q, Qin X, Xu Y, Ni C, Huang J, Zhu L, Zhong F, Liu W, Yao G (2018) Rice PPS 1 encodes a DYW motif-containing pentatricopeptide repeat protein required for five consecutive RNA-editing sites of nad3 in mitochondria. New Phytologist. 220(3):878–892
Yang J, Cui Y, Zhang X, Yang Z, Lai J, Song W, Liang J, Li X (2022) Maize PPR278 functions in mitochondrial RNA splicing and editing. Int J Mol Sci 23(6):3035
Yuan H, Liu D (2012) Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in arabidopsis. The Plant J 70(3):432–444
Zhang A, Jiang X, Zhang F et al (2020) Dynamic response of RNA editing to temperature in grape by RNA deep sequencing. Funct Integr Genomics 20:421–432. https://doi.org/10.1007/s10142-019-00727-7
doi: 10.1007/s10142-019-00727-7
Zheng P, Wang D, Huang Y, Chen H, Du H, Tu J (2020) Detection and analysis of C-to-U RNA editing in rice mitochondria-encoded ORFs. Plants. 9(10):1277
Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids Research. 31(13):3406–3415