Partial Identification of Latent Correlations with Ordinal Data.
ordinal data
partial identification
polychoric correlation
Journal
Psychometrika
ISSN: 1860-0980
Titre abrégé: Psychometrika
Pays: United States
ID NLM: 0376503
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
accepted:
13
12
2022
pubmed:
1
2
2023
medline:
4
3
2023
entrez:
31
1
2023
Statut:
ppublish
Résumé
The polychoric correlation is a popular measure of association for ordinal data. It estimates a latent correlation, i.e., the correlation of a latent vector. This vector is assumed to be bivariate normal, an assumption that cannot always be justified. When bivariate normality does not hold, the polychoric correlation will not necessarily approximate the true latent correlation, even when the observed variables have many categories. We calculate the sets of possible values of the latent correlation when latent bivariate normality is not necessarily true, but at least the latent marginals are known. The resulting sets are called partial identification sets, and are shown to shrink to the true latent correlation as the number of categories increase. Moreover, we investigate partial identification under the additional assumption that the latent copula is symmetric, and calculate the partial identification set when one variable is ordinal and another is continuous. We show that little can be said about latent correlations, unless we have impractically many categories or we know a great deal about the distribution of the latent vector. An open-source R package is available for applying our results.
Identifiants
pubmed: 36719549
doi: 10.1007/s11336-022-09898-y
pii: 10.1007/s11336-022-09898-y
pmc: PMC9977897
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
241-252Informations de copyright
© 2023. The Author(s) under exclusive licence to The Psychometric Society.
Références
Psychol Methods. 2021 Nov 29;:
pubmed: 34843277
Psychol Methods. 2021 Dec 20;:
pubmed: 34928677
Stat Med. 2017 Oct 30;36(24):3875-3894
pubmed: 28766323
Br J Math Stat Psychol. 1984 May;37 ( Pt 1):62-83
pubmed: 6733054
Psychol Methods. 2012 Sep;17(3):354-73
pubmed: 22799625
Psychol Methods. 2022 Aug;27(4):541-567
pubmed: 33793270
Psychometrika. 2020 Dec;85(4):1028-1051
pubmed: 33346887
Psychometrika. 2019 Dec;84(4):1000-1017
pubmed: 31562591
Psychol Methods. 2018 Sep;23(3):412-433
pubmed: 28557467
Psychol Methods. 2022 May 19;:
pubmed: 35588076
Psychometrika. 2015 Mar;80(1):126-50
pubmed: 24297437
Psychol Methods. 2004 Dec;9(4):466-91
pubmed: 15598100