Bottlenecks can constrain and channel evolutionary paths.

adaptation demography forecasting evolution microbial evolution stochastic model

Journal

Genetics
ISSN: 1943-2631
Titre abrégé: Genetics
Pays: United States
ID NLM: 0374636

Informations de publication

Date de publication:
26 05 2023
Historique:
received: 13 10 2022
accepted: 24 12 2022
medline: 29 5 2023
pubmed: 3 2 2023
entrez: 2 2 2023
Statut: ppublish

Résumé

Population bottlenecks are commonplace in experimental evolution, specifically in serial passaging experiments where microbial populations alternate between growth and dilution. Natural populations also experience such fluctuations caused by seasonality, resource limitation, or host-to-host transmission for pathogens. Yet, how unlimited growth with periodic bottlenecks influence the adaptation of populations is not fully understood. Here, we study theoretically the effects of bottlenecks on the accessibility of evolutionary paths and on the rate of evolution. We model an asexual population evolving on a minimal fitness landscape consisting of two types of beneficial mutations with the empirically supported trade-off between mutation rate and fitness advantage, in the regime where multiple beneficial mutations may segregate simultaneously. In the limit of large population sizes and small mutation rates, we show the existence of a unique most likely evolutionary scenario, determined by the size of the wild-type population at the beginning and at the end of each cycle. These two key demographic parameters determine which adaptive paths may be taken by the evolving population by controlling the supply of mutants during growth and the loss of mutants at the bottleneck. We do not only show that bottlenecks act as a deterministic control of evolutionary paths but also that each possible evolutionary scenario can be forced to occur by tuning demographic parameters. This work unveils the effects of demography on adaptation of periodically bottlenecked populations and can guide the design of evolution experiments.

Identifiants

pubmed: 36728496
pii: 7024625
doi: 10.1093/genetics/iyad001
pmc: PMC10213489
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America.

Références

Nature. 2013 Aug 29;500(7464):571-4
pubmed: 23873039
Nat Ecol Evol. 2022 Apr;6(4):439-447
pubmed: 35241808
Genetics. 2007 Jul;176(3):1759-98
pubmed: 17483432
PLoS Genet. 2014 Mar 06;10(3):e1004182
pubmed: 24603313
Genetics. 2002 Oct;162(2):961-71
pubmed: 12399403
Genetics. 1943 Nov;28(6):491-511
pubmed: 17247100
Mol Biol Evol. 2007 Feb;24(2):562-73
pubmed: 17124182
Genetics. 2015 Jun;200(2):619-31
pubmed: 25911659
Science. 1999 Sep 10;285(5434):1745-7
pubmed: 10481012
Nat Rev Genet. 2007 Aug;8(8):610-8
pubmed: 17637733
Nature. 2017 Nov 2;551(7678):45-50
pubmed: 29045390
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):571-6
pubmed: 23267075
Curr Opin Microbiol. 2014 Oct;21:51-7
pubmed: 25444121
Proc Biol Sci. 2010 Feb 22;277(1681):643-50
pubmed: 19889704
Curr Opin Chem Biol. 2015 Feb;24:1-10
pubmed: 25461718
Nat Genet. 2006 Apr;38(4):484-8
pubmed: 16550173
Mol Biol Evol. 2020 Jun 1;37(6):1637-1646
pubmed: 32031639
Nat Rev Genet. 2014 Jul;15(7):480-90
pubmed: 24913663
Proc Biol Sci. 2016 Aug 31;283(1837):
pubmed: 27581875
Science. 2006 Apr 7;312(5770):111-4
pubmed: 16601193
J Genet. 1949 Dec;49(3):264-85
pubmed: 24536673
Trends Ecol Evol. 2012 Oct;27(10):547-60
pubmed: 22819306
Genetics. 2008 Dec;180(4):2163-73
pubmed: 18832359
Evolution. 2010 Jul;64(7):1973-83
pubmed: 20199567
Phys Rev E. 2021 Apr;103(4-1):042415
pubmed: 34005989
Trends Ecol Evol. 2013 Nov;28(11):659-69
pubmed: 24075201
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906
pubmed: 18524956
PLoS Comput Biol. 2019 Apr 15;15(4):e1006866
pubmed: 30986219
BMC Evol Biol. 2009 Sep 18;9:236
pubmed: 19765292
Mol Biol Evol. 2017 May 1;34(5):1029-1039
pubmed: 28087782
Evolution. 2001 Dec;55(12):2606-10
pubmed: 11831673
PLoS Genet. 2014 Jan;10(1):e1004000
pubmed: 24465214
Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9995-10000
pubmed: 19528653
Nat Ecol Evol. 2021 Sep;5(9):1233-1242
pubmed: 34312522
PLoS Pathog. 2015 Jun 11;11(6):e1004823
pubmed: 26066486
Math Biosci. 1999 Nov-Dec;162(1-2):1-32
pubmed: 10616278
Evolution. 2009 Apr;63(4):950-8
pubmed: 19210533

Auteurs

Jasmine Gamblin (J)

Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75005 Paris, France.

Sylvain Gandon (S)

Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, Univ Montpellier, EPHE, IRD, 34293 Montpellier, France.

François Blanquart (F)

Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75005 Paris, France.
Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, Université Paris Cité, 75870 Paris, France.

Amaury Lambert (A)

Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75005 Paris, France.
Institut de Biologie de l'ENS (IBENS), École Normale Supérieure (ENS), CNRS, INSERM, Université PSL, 75005 Paris, France.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH