A Comprehensive Review of Dilated Cardiomyopathy in Pre-clinical Animal Models in Addition to Herbal Treatment Options and Multi-modality Imaging Strategies.
Dilated cardiomyopathy
cardioprotective herbal plants
diagnostic strategies
heart failure
pathophysiology
small animal models
Journal
Cardiovascular & hematological disorders drug targets
ISSN: 2212-4063
Titre abrégé: Cardiovasc Hematol Disord Drug Targets
Pays: United Arab Emirates
ID NLM: 101269160
Informations de publication
Date de publication:
2023
2023
Historique:
received:
26
08
2022
revised:
05
11
2022
accepted:
17
11
2022
pubmed:
4
2
2023
medline:
9
3
2023
entrez:
3
2
2023
Statut:
ppublish
Résumé
Dilated cardiomyopathy (DCM) is distinguished by ventricular chamber expansion, systolic dysfunction, and normal left ventricular (LV) wall thickness, and is mainly caused due to genetic or environmental factors; however, its aetiology is undetermined in the majority of patients. The focus of this work is on pathogenesis, small animal models, as well as the herbal medicinal approach, and the most recent advances in imaging modalities for patients with dilated cardiomyopathy. Several small animal models have been proposed over the last few years to mimic various pathomechanisms that contribute to dilated cardiomyopathy. Surgical procedures, gene mutations, and drug therapies are all characteristic features of these models. The pros and cons, including heart failure stimulation of extensively established small animal models for dilated cardiomyopathy, are illustrated, as these models tend to procure key insights and contribute to the development of innovative treatment techniques for patients. Traditional medicinal plants used as treatment in these models are also discussed, along with contemporary developments in herbal therapies. In the last few decades, accurate diagnosis, proper recognition of the underlying disease, specific risk stratification, and forecasting of clinical outcome, have indeed improved the health of DCM patients. Cardiac magnetic resonance (CMR) is the bullion criterion for assessing ventricular volume and ejection fraction in a reliable and consistent direction. Other technologies, like strain analysis and 3D echocardiography, have enhanced this technique's predictive and therapeutic potential. Nuclear imaging potentially helps doctors pinpoint the causative factors of left ventricular dysfunction, as with cardiac sarcoidosis and amyloidosis.
Identifiants
pubmed: 36734898
pii: CHDDT-EPUB-129015
doi: 10.2174/1871529X23666230123122808
doi:
Types de publication
Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
207-225Informations de copyright
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.
Références
Brigden W.; Uncommon myocardial diseases; the non-coronary cardiomyopathies. Lancet 1957,270(7007),1243-1249
doi: 10.1016/S0140-6736(57)90159-9
pubmed: 13492602
Elliott P.; Andersson B.; Arbustini E.; Bilinska Z.; Cecchi F.; Charron P.; Dubourg O.; Kühl U.; Maisch B.; McKenna W.J.; Monserrat L.; Pankuweit S.; Rapezzi C.; Seferovic P.; Tavazzi L.; Keren A.; Classification of the cardiomyopathies: A position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur Heart J 2007,29(2),270-276
doi: 10.1093/eurheartj/ehm342
pubmed: 17916581
Pinto Y.M.; Elliott P.M.; Arbustini E.; Adler Y.; Anastasakis A.; Böhm M.; Duboc D.; Gimeno J.; de Groote P.; Imazio M.; Heymans S.; Klingel K.; Komajda M.; Limongelli G.; Linhart A.; Mogensen J.; Moon J.; Pieper P.G.; Seferovic P.M.; Schueler S.; Zamorano J.L.; Caforio A.L.P.; Charron P.; Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: A position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 2016,37(23),1850-1858
doi: 10.1093/eurheartj/ehv727
pubmed: 26792875
Maron B.J.; Towbin J.A.; Thiene G.; Antzelevitch C.; Corrado D.; Arnett D.; Moss A.J.; Seidman C.E.; Young J.B.; Contemporary definitions and classification of the cardiomyopathies. Circulation 2006,113(14),1807-1816
doi: 10.1161/CIRCULATIONAHA.106.174287
pubmed: 16567565
Towbin J.A.; Lowe A.M.; Colan S.D.; Sleeper L.A.; Orav E.J.; Clunie S.; Messere J.; Cox G.F.; Lurie P.R.; Hsu D.; Canter C.; Wilkinson J.D.; Lipshultz S.E.; Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 2006,296(15),1867-1876
doi: 10.1001/jama.296.15.1867
pubmed: 17047217
Taylor M.R.G.; Carniel E.; Mestroni L.; Cardiomyopathy, familial dilated. Orphanet J Rare Dis 2006,1(1),27
doi: 10.1186/1750-1172-1-27
pubmed: 16839424
Kaski J.P.; Elliott P.; The classification concept of the ESC working group on myocardial and pericardial diseases for dilated cardiomyopathy. Herz 2007,32(6),446-451
doi: 10.1007/s00059-007-3045-5
pubmed: 17882369
Roura S.; Bayes-Genis A.; Vascular dysfunction in idiopathic dilated cardiomyopathy. Nat Rev Cardiol 2009,6(9),590-598
doi: 10.1038/nrcardio.2009.130
pubmed: 19636323
Westphal E.; Rohrbach S.; Buerke M.; Behr H.; Darmer D.; Silber R.E.; Werdan K.; Loppnow H.; Altered interleukin-1 receptor antagonist and interleukin-18 mRNA expression in myocardial tissues of patients with dilatated cardiomyopathy. Mol Med 2008,14(1-2),55-63
doi: 10.2119/2007-00058.Westphal
pubmed: 17948066
Bott-Flügel L.; Weig H.J.; Ühlein H.; Nabauer M.; Laugwitz K.L.; Seyfarth M.; Quantitative analysis of apoptotic markers in human end-stage heart failure. Eur J Heart Fail 2008,10(2),129-132
doi: 10.1016/j.ejheart.2007.12.013
pubmed: 18279768
Jan M.F.; Tajik A.J.; Modern imaging techniques in cardiomyopathies. Circ Res 2017,121(7),874-891
doi: 10.1161/CIRCRESAHA.117.309600
pubmed: 28912188
Rose E.A.; Gelijns A.C.; Moskowitz A.J.; Heitjan D.F.; Stevenson L.W.; Dembitsky W.; Long J.W.; Ascheim D.D.; Tierney A.R.; Levitan R.G.; Watson J.T.; Ronan N.S.; Shapiro P.A.; Lazar R.M.; Miller L.W.; Gupta L.; Frazier O.H.; Desvigne-Nickens P.; Oz M.C.; Poirier V.L.; Meier P.; Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001,345(20),1435-1443
doi: 10.1056/NEJMoa012175
pubmed: 11794191
Yoshioka D.; Li B.; Takayama H.; Garan R.A.; Topkara V.K.; Han J.; Kurlansky P.; Yuzefpolskaya M.; Colombo P.C.; Naka Y.; Takeda K.; Outcome of heart transplantation after bridge-to-transplant strategy using various mechanical circulatory support devices. Interact Cardiovasc Thorac Surg 2017,25(6),918-924
doi: 10.1093/icvts/ivx201
pubmed: 29106559
Hershberger R.E.; Hedges D.J.; Morales A.; Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat Rev Cardiol 2013,10(9),531-547
doi: 10.1038/nrcardio.2013.105
pubmed: 23900355
McNally E.M.; Mestroni L.; Dilated cardiomyopathy. Circ Res 2017,121(7),731-748
doi: 10.1161/CIRCRESAHA.116.309396
pubmed: 28912180
Herman D.S.; Lam L.; Taylor M.R.G.; Wang L.; Teekakirikul P.; Christodoulou D.; Conner L.; DePalma S.R.; McDonough B.; Sparks E.; Teodorescu D.L.; Cirino A.L.; Banner N.R.; Pennell D.J.; Graw S.; Merlo M.; Di Lenarda A.; Sinagra G.; Bos J.M.; Ackerman M.J.; Mitchell R.N.; Murry C.E.; Lakdawala N.K.; Ho C.Y.; Barton P.J.R.; Cook S.A.; Mestroni L.; Seidman J.G.; Seidman C.E.; Truncations of titin causing dilated cardiomyopathy. N Engl J Med 2012,366(7),619-628
doi: 10.1056/NEJMoa1110186
pubmed: 22335739
Jacoby D.; McKenna W.J.; Genetics of inherited cardiomyopathy. Eur Heart J 2012,33(3),296-304
doi: 10.1093/eurheartj/ehr260
pubmed: 21810862
Towbin J.A.; Bowles N.; Dilated cardiomyopathy: A tale of cytoskeletal proteins and beyond. J Cardiovasc Electrophysiol 2006,17(8),919-926
doi: 10.1111/j.1540-8167.2006.00530.x
pubmed: 16764708
Bowles N.E.; Bowles K.R.; Towbin J.A.; The “final common pathway” hypothesis and inherited cardiovascular disease. The role of cytoskeletal proteins in dilated cardiomyopathy. Herz 2000,25(3),168-175
doi: 10.1007/s000590050003
pubmed: 10904835
Feng J.; Yan J.; Buzin C.H.; Towbin J.A.; Sommer S.S.; Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab 2002,77(1-2),119-126
doi: 10.1016/S1096-7192(02)00153-1
pubmed: 12359139
Taylor M.R.G.; Slavov D.; Ku L.; Di Lenarda A.; Sinagra G.; Carniel E.; Haubold K.; Boucek M.M.; Ferguson D.; Graw S.L.; Zhu X.; Cavanaugh J.; Sucharov C.C.; Long C.S.; Bristow M.R.; Lavori P.; Mestroni L.; Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 2007,115(10),1244-1251
doi: 10.1161/CIRCULATIONAHA.106.646778
pubmed: 17325244
van Tintelen J.P.; Hofstra R.M.W.; Katerberg H.; Rossenbacker T.; Wiesfeld A.C.P.; du Marchie Sarvaas G.J.; Wilde A.A.M.; van Langen I.M.; Nannenberg E.A.; van der Kooi A.J.; Kraak M.; van Gelder I.C.; van Veldhuisen D.J.; Vos Y.; van den Berg M.P.; High yield of LMNA mutations in patients with dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. Am Heart J 2007,154(6),1130-1139
doi: 10.1016/j.ahj.2007.07.038
pubmed: 18035086
Tsubata S.; Bowles K.R.; Vatta M.; Zintz C.; Titus J.; Muhonen L.; Bowles N.E.; Towbin J.A.; Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 2000,106(5),655-662
doi: 10.1172/JCI9224
pubmed: 10974018
Barresi R.; Di Blasi C.; Negri T.; Brugnoni R.; Vitali A.; Felisari G.; Salandi A.; Daniel S.; Cornelio F.; Morandi L.; Mora M.; Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by beta sarcoglycan mutations. J Med Genet 2000,37(2),102-107
doi: 10.1136/jmg.37.2.102
pubmed: 10662809
Olson T.M.; Illenberger S.; Kishimoto N.Y.; Huttelmaier S.; Keating M.T.; Jockusch B.M.; Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 2002,105(4),431-437
doi: 10.1161/hc0402.102930
pubmed: 11815424
Pyle W.G.; Solaro R.J.; At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res 2004,94(3),296-305
doi: 10.1161/01.RES.0000116143.74830.A9
pubmed: 14976140
Vatta M.; Mohapatra B.; Jimenez S.; Sanchez X.; Faulkner G.; Perles Z.; Sinagra G.; Lin J.H.; Vu T.M.; Zhou Q.; Bowles K.R.; Di Lenarda A.; Schimmenti L.; Fox M.; Chrisco M.A.; Murphy R.T.; McKenna W.; Elliott P.; Bowles N.E.; Chen J.; Valle G.; Towbin J.A.; Mutations in Cypher/ZASPin patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 2003,42(11),2014-2027
doi: 10.1016/j.jacc.2003.10.021
pubmed: 14662268
Mohapatra B.; Jimenez S.; Lin J.H.; Bowles K.R.; Coveler K.J.; Marx J.G.; Chrisco M.A.; Murphy R.T.; Lurie P.R.; Schwartz R.J.; Elliott P.M.; Vatta M.; McKenna W.; Towbin J.A.; Bowles N.E.; Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 2003,80(1-2),207-215
doi: 10.1016/S1096-7192(03)00142-2
pubmed: 14567970
Hayashi T.; Arimura T.; Itoh-Satoh M.; Ueda K.; Hohda S.; Inagaki N.; Takahashi M.; Hori H.; Yasunami M.; Nishi H.; Koga Y.; Nakamura H.; Matsuzaki M.; Choi B.Y.; Bae S.W.; You C.W.; Han K.H.; Park J.E.; Knöll R.; Hoshijima M.; Chien K.R.; Kimura A.; Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 2004,44(11),2192-2201
doi: 10.1016/j.jacc.2004.08.058
pubmed: 15582318
Caforio A.L.; Pankuweit S.; Arbustini E.; Basso C.; Gimeno-Blanes J.; Felix S.B.; Fu M.; Helio T.; Heymans S.; Jahns R.; Klingel K.; Linhart A.; Maisch B.; McKenna W.; Mogensen J.; Pinto Y.M.; Ristic A.; Schultheiss H.P.; Seggewiss H.; Tavazzi L.; Thiene G.; Yilmaz A.; Charron P.; Elliott P.M.; Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the european society of cardiology working group on myocardial and pericardial diseases. Eur Heart J 2013,34,2636-2648
doi: 10.1093/eurheartj/eht210
Bowles N.E.; Ni J.; Kearney D.L.; Pauschinger M.; Schultheiss H.P.; McCarthy R.; Hare J.; Bricker J.T.; Bowles K.R.; Towbin J.A.; Detection of viruses in myocardial tissues by polymerase chain reaction. J Am Coll Cardiol 2003,42(3),466-472
doi: 10.1016/S0735-1097(03)00648-X
pubmed: 12906974
Bowles N.E.; Bowles K.R.; Towbin J.A.; Viral genomic detection and outcome in myocarditis. Heart Fail Clin 2005,1(3),407-417
doi: 10.1016/j.hfc.2005.06.011
pubmed: 17386863
Li Y.; Heuser J.S.; Cunningham L.C.; Kosanke S.D.; Cunningham M.W.; Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J Immunol 2006,177(11),8234-8240
doi: 10.4049/jimmunol.177.11.8234
pubmed: 17114501
Escher F.; Kühl U.; Lassner D.; Stroux A.; Westermann D.; Skurk C.; Tschöpe C.; Poller W.; Schultheiss H.P.; Presence of perforin in endomyocardial biopsies of patients with inflammatory cardiomyopathy predicts poor outcome. Eur J Heart Fail 2014,16(10),1066-1072
doi: 10.1002/ejhf.148
pubmed: 25163698
Fauchier L.; Babuty D.; Poret P.; Casset-Senon D.; Autret M.L.; Cosnay P.; Fauchier J.P.; Comparison of long-term outcome of alcoholic and idiopathic dilated cardiomyopathy. Eur Heart J 2000,21(4),306-314
doi: 10.1053/euhj.1999.1761
pubmed: 10653678
Ewer M.S.; Vooletich M.T.; Durand J.B.; Woods M.L.; Davis J.R.; Valero V.; Lenihan D.J.; Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 2005,23(31),7820-7826
doi: 10.1200/JCO.2005.13.300
pubmed: 16258084
Figueredo V.M.; Chemical cardiomyopathies: The negative effects of medications and nonprescribed drugs on the heart. Am J Med 2011,124(6),480-488
doi: 10.1016/j.amjmed.2010.11.031
pubmed: 21605722
Ameri P.; Canepa M.; Anker M.S.; Belenkov Y.; Bergler-Klein J.; Cohen-Solal A.; Farmakis D.; López-Fernández T.; Lainscak M.; Pudil R.; Ruschitska F.; Seferovic P.; Filippatos G.; Coats A.; Suter T.; Von Haehling S.; Ciardiello F.; de Boer R.A.; Lyon A.R.; Tocchetti C.G.; Cancer diagnosis in patients with heart failure: Epidemiology, clinical implications and gaps in knowledge. Eur J Heart Fail 2018,20(5),879-887
doi: 10.1002/ejhf.1165
pubmed: 29464808
Zamorano J.L.; Lancellotti P.; Rodriguez Muñoz D.; Aboyans V.; Asteggiano R.; Galderisi M.; Habib G.; Lenihan D.J.; Lip G.Y.H.; Lyon A.R.; Lopez Fernandez T.; Mohty D.; Piepoli M.F.; Tamargo J.; Torbicki A.; Suter T.M.; 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the esc committee for practice guidelines. Eur Heart J 2016,37(36),2768-2801
doi: 10.1093/eurheartj/ehw211
pubmed: 27567406
Wallace K.B.; Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 2007,7(2),101-107
doi: 10.1007/s12012-007-0008-2
pubmed: 17652813
Lebrecht D.; Walker U.A.; Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 2007,7(2),108-113
doi: 10.1007/s12012-007-0009-1
pubmed: 17652814
Wu A.H.; Cardiotoxic drugs: clinical monitoring and decision making. Heart 2008,94(11),1503-1509
doi: 10.1136/hrt.2007.133876
pubmed: 18931163
Carver J.R.; Ng A.; Meadows A.T.; Vaughn D.J.; Cardiovascular late effects and the ongoing care of adult cancer survivors. Dis Manag 2008,11(1),1-6
doi: 10.1089/dis.2008.111714
pubmed: 18279108
Iarussi D.; Auricchio U.; Agretto A.; Murano A.; Giuliano M.; Casale F.; Indolfi P.; Iacono A.; Protective effect of coenzyme q10 on anthracyclines cardiotoxicity: Control study in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Mol Aspects Med 1994,15,s207-s212
doi: 10.1016/0098-2997(94)90030-2
pubmed: 7752832
Silber J.H.; Cnaan A.; Clark B.J.; Paridon S.M.; Chin A.J.; Rychik J.; Hogarty A.N.; Cohen M.I.; Barber G.; Rutkowski M.; Kimball T.R.; Delaat C.; Steinherz L.J.; Zhao H.; Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol 2004,22(5),820-828
doi: 10.1200/JCO.2004.06.022
pubmed: 14990637
Singal P.K.; Iliskovic N.; Doxorubicin-induced cardiomyopathy. N Engl J Med 1998,339(13),900-905
doi: 10.1056/NEJM199809243391307
pubmed: 9744975
van Acker F.A.; van Acker S.A.; Kramer K.; Haenen G.R.; Bast A.; van der Vijgh W.J.; 7-monohydroxyethylrutoside protects against chronic doxorubicin-induced cardiotoxicity when administered only once per week. Clin Cancer Res 2000,6(4),1337-1341
pubmed: 10778960
Masci P.G.; Maestrini V.K.D.; The ESC Textbook of Cardiovascular Medicine 2009
Enkhsaikhan P.; Animal models of cardiomyopathiesAnimal Models of Cardiomyopathies 2019
doi: 10.5772/intechopen.89033
Houser S.R.; Margulies K.B.; Murphy A.M.; Spinale F.G.; Francis G.S.; Prabhu S.D.; Animal models of heart failure: A scientific statement from the american heart association. Circ Res 2012,111(1),131-150
doi: 10.1161/RES.0b013e3182582523
Recchia F.A.; Lionetti V.; Animal models of dilated cardiomyopathy for translational research. Vet Res Commun 2007,31(S1),35-41
doi: 10.1007/s11259-007-0005-8
pubmed: 17682844
Milani-Nejad N.; Janssen P.M.L.; Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol Ther 2014,141(3),235-249
doi: 10.1016/j.pharmthera.2013.10.007
pubmed: 24140081
Piacentino V.; Weber C.R.; Chen X.; Weisser-Thomas J.; Margulies K.B.; Bers D.M.; Houser S.R.; Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 2003,92(6),651-658
doi: 10.1161/01.RES.0000062469.83985.9B
pubmed: 12600875
Pfeffer M.A.; Pfeffer J.M.; Fishbein M.C.; Fletcher P.J.; Spadaro J.; Kloner R.A.; Braunwald E.; Myocardial infarct size and ventricular function in rats. Circ Res 2021,44(4),503-512
doi: 10.1161/01.res.44.4.503
pubmed: 428047
Prabhu S.; Wang, G.; Luo, J.; Gu, Y.; Ping, P.; Chandrasekar, B. β-Adrenergic receptor blockade modulates Bcl-XS expression and reduces apoptosis in failing myocardium. J Mol Cell Cardiol 2003,35(5),483-493
doi: 10.1016/S0022-2828(03)00052-X
pubmed: 12738230
Hamid T.; Gu Y.; Ortines R.V.; Bhattacharya C.; Wang G.; Xuan Y.T.; Prabhu S.D.; Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 2009,119(10),1386-1397
doi: 10.1161/CIRCULATIONAHA.108.802918
pubmed: 19255345
Wang G.; Hamid T.; Keith R.J.; Zhou G.; Partridge C.R.; Xiang X.; Kingery J.R.; Lewis R.K.; Li Q.; Rokosh D.G.; Ford R.; Spinale F.G.; Riggs D.W.; Srivastava S.; Bhatnagar A.; Bolli R.; Prabhu S.D.; Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 2010,121(17),1912-1925
doi: 10.1161/CIRCULATIONAHA.109.905471
pubmed: 20404253
Zhang R.; Khoo M.S.C.; Wu Y.; Yang Y.; Grueter C.E.; Ni G.; Price E.E.; Thiel W.; Guatimosim S.; Song L.S.; Madu E.C.; Shah A.N.; Vishnivetskaya T.A.; Atkinson J.B.; Gurevich V.V.; Salama G.; Lederer W.J.; Colbran R.J.; Anderson M.E.; Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 2005,11(4),409-417
doi: 10.1038/nm1215
pubmed: 15793582
Dai S.; Yuan F.; Mu J.; Li C.; Chen N.; Guo S.; Kingery J.; Prabhu S.D.; Bolli R.; Rokosh G.; Chronic AMD3100 antagonism of SDF-1α-CXCR4 exacerbates cardiac dysfunction and remodeling after myocardial infarction. J Mol Cell Cardiol 2010,49(4),587-597
doi: 10.1016/j.yjmcc.2010.07.010
pubmed: 20655922
Tang X.L.; Rokosh G.; Sanganalmath S.K.; Yuan F.; Sato H.; Mu J.; Dai S.; Li C.; Chen N.; Peng Y.; Dawn B.; Hunt G.; Leri A.; Kajstura J.; Tiwari S.; Shirk G.; Anversa P.; Bolli R.; Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 2010,121(2),293-305
doi: 10.1161/CIRCULATIONAHA.109.871905
pubmed: 20048209
Dawn B.; Guo Y.; Rezazadeh A.; Huang Y.; Stein A.B.; Hunt G.; Tiwari S.; Varma J.; Gu Y.; Prabhu S.D.; Kajstura J.; Anversa P.; Ildstad S.T.; Bolli R.; Postinfarct cytokine therapy regenerates cardiac tissue and improves left ventricular function. Circ Res 2006,98(8),1098-1105
doi: 10.1161/01.RES.0000218454.76784.66
pubmed: 16556872
Liu X.; Simpson J.A.; Brunt K.R.; Ward C.A.; Hall S.R.R.; Kinobe R.T.; Barrette V.; Tse M.Y.; Pang S.C.; Pachori A.S.; Dzau V.J.; Ogunyankin K.O.; Melo L.G.; Preemptive heme oxygenase-1 gene delivery reveals reduced mortality and preservation of left ventricular function 1 yr after acute myocardial infarction. Am J Physiol Heart Circ Physiol 2007,293(1),H48-H59
doi: 10.1152/ajpheart.00741.2006
pubmed: 17322421
Zolotareva A.G.; Kogan M.E.; Production of experimental occlusive myocardial infarction in mice. Cor Vasa 1978,20(4),308-314
pubmed: 729388
van den Borne S.W.M.; van de Schans V.A.M.; Strzelecka A.E.; Vervoort-Peters H.T.M.; Lijnen P.M.; Cleutjens J.P.M.; Smits J.F.M.; Daemen M.J.A.P.; Janssen B.J.A.; Blankesteijn W.M.; Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 2009,84(2),273-282
doi: 10.1093/cvr/cvp207
pubmed: 19542177
Lindsey M.L.; Bolli R.; Canty J.M.; Du X.J.; Frangogiannis N.G.; Frantz S.; Gourdie R.G.; Holmes J.W.; Jones S.P.; Kloner R.A.; Lefer D.J.; Liao R.; Murphy E.; Ping P.; Przyklenk K.; Recchia F.A.; Schwartz Longacre L.; Ripplinger C.M.; Van Eyk J.E.; Heusch G.; Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018,314(4),H812-H838
doi: 10.1152/ajpheart.00335.2017
pubmed: 29351451
Korf-Klingebiel M.; Reboll M.R.; Klede S.; Brod T.; Pich A.; Polten F.; Napp L.C.; Bauersachs J.; Ganser A.; Brinkmann E.; Reimann I.; Kempf T.; Niessen H.W.; Mizrahi J.; Schönfeld H.J.; Iglesias A.; Bobadilla M.; Wang Y.; Wollert K.C.; Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat Med 2015,21(2),140-149
doi: 10.1038/nm.3778
pubmed: 25581518
Yeang C.; Hasanally D.; Que X.; Hung M.Y.; Stamenkovic A.; Chan D.; Chaudhary R.; Margulets V.; Edel A.L.; Hoshijima M.; Gu Y.; Bradford W.; Dalton N.; Miu P.; Cheung D.Y.; Jassal D.S.; Pierce G.N.; Peterson K.L.; Kirshenbaum L.A.; Witztum J.L.; Tsimikas S.; Ravandi A.; Reduction of myocardial ischaemia-reperfusion injury by inactivating oxidized phospho lipids. Cardiovasc Res 2019,115(1),179-189
doi: 10.1093/cvr/cvy136
pubmed: 29850765
Poncelas M.; Inserte J.; Aluja D.; Hernando V.; Vilardosa U.; Garcia-Dorado D.; Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling. Cardiovasc Res 2017,113(8),950-961
doi: 10.1093/cvr/cvx073
pubmed: 28460013
Hausenloy D.J.; Chilian W.; Crea F.; Davidson S.M.; Ferdinandy P.; Garcia-Dorado D.; van Royen N.; Schulz R.; Heusch G.; The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res 2019,115(7),1143-1155
doi: 10.1093/cvr/cvy286
pubmed: 30428011
Weinheimer C.J.; Kovacs A.; Evans S.; Matkovich S.J.; Barger P.M.; Mann D.L.; Load-dependent changes in left ventricular structure and function in a pathophysiologically relevant murine model of reversible heart failure. Circ Heart Fail 2018,11(5),e004351
doi: 10.1161/CIRCHEARTFAILURE.117.004351
pubmed: 29716898
Kapur N.K.; Paruchuri V.; Aronovitz M.J.; Qiao X.; Mackey E.E.; Daly G.H.; Ughreja K.; Levine J.; Blanton R.; Hill N.S.; Karas R.H.; Biventricular remodeling in murine models of right ventricular pressure overload. PLoS One 2013,8(7),e70802
doi: 10.1371/journal.pone.0070802
pubmed: 23936252
Urashima T.; Zhao M.; Wagner R.; Fajardo G.; Farahani S.; Quertermous T.; Bernstein D.; Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol 2008,295(3),H1351-H1368
doi: 10.1152/ajpheart.91526.2007
pubmed: 18586894
Rockman H.A.; Ross R.S.; Harris A.N.; Knowlton K.U.; Steinhelper M.E.; Field L.J.; Ross J.; Chien K.R.; Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci 1991,88(18),8277-8281
doi: 10.1073/pnas.88.18.8277
pubmed: 1832775
Riehle C.; Bauersachs J.; Small animal models of heart failure. Cardiovasc Res 2019,115(13),1838-1849
doi: 10.1093/cvr/cvz161
pubmed: 31243437
Rockman H.A.; Wachhorst S.P.; Mao L.; Ross J.; Jr A.N.G.; II receptor blockade prevents ventricular hypertrophy and ANF gene expression with pressure overload in mice. Am J Physiol 1994,266(6),H2468-H2475
pubmed: 8024008
Barrick C.J.; Rojas M.; Schoonhoven R.; Smyth S.S.; Threadgill D.W.; Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2007,292(5),H2119-H2130
doi: 10.1152/ajpheart.00816.2006
pubmed: 17172276
Takimoto E.; Champion H.C.; Li M.; Belardi D.; Ren S.; Rodriguez E.R.; Bedja D.; Gabrielson K.L.; Wang Y.; Kass D.A.; Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005,11(2),214-222
doi: 10.1038/nm1175
pubmed: 15665834
Lewis G.D.; Lachmann J.; Camuso J.; Lepore J.J.; Shin J.; Martinovic M.E.; Systrom D.M.; Bloch K.D.; Semigran M.J.; Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 2007,115(1),59-66
doi: 10.1161/CIRCULATIONAHA.106.626226
pubmed: 17179022
Riehle C.; Abel E.D.; Insulin signaling and heart failure. Circ Res 2016,118(7),1151-1169
doi: 10.1161/CIRCRESAHA.116.306206
pubmed: 27034277
Gomes A.C.; Falcão-Pires I.; Pires A.L.; Brás-Silva C.; Leite-Moreira A.F.; Rodent models of heart failure: An updated review. Heart Fail Rev 2013,18(2),219-249
doi: 10.1007/s10741-012-9305-3
pubmed: 22446984
Duncker D.J.; Bakkers J.; Brundel B.J.; Robbins J.; Tardiff J.C.; Carrier L.; Animal and in silico models for the study of sarcomeric cardiomyopathies. Cardiovasc Res 2015,105(4),439-448
doi: 10.1093/cvr/cvv006
pubmed: 25600962
Doudna J.A.; Charpentier E.; The new frontier of genome engineering with CRISPR-Cas9. Science 2014,346(6213),1258096
doi: 10.1126/science.1258096
pubmed: 25430774
Hsu P.D.; Lander E.S.; Zhang F.; Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014,157(6),1262-1278
doi: 10.1016/j.cell.2014.05.010
pubmed: 24906146
Suzuki K.; Tsunekawa Y.; Hernandez-Benitez R.; Wu J.; Zhu J.; Kim E.J.; Hatanaka F.; Yamamoto M.; Araoka T.; Li Z.; Kurita M.; Hishida T.; Li M.; Aizawa E.; Guo S.; Chen S.; Goebl A.; Soligalla R.D.; Qu J.; Jiang T.; Fu X.; Jafari M.; Esteban C.R.; Berggren W.T.; Lajara J.; Nuñez-Delicado E.; Guillen P.; Campistol J.M.; Matsuzaki F.; Liu G.H.; Magistretti P.; Zhang K.; Callaway E.M.; Zhang K.; Belmonte J.C.I.; In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016,540(7631),144-149
doi: 10.1038/nature20565
pubmed: 27851729
Ross J.; Dilated cardiomyopathy: Concepts derived from gene deficient and transgenic animal models. Circ J 2002,66(3),219-224
doi: 10.1253/circj.66.219
pubmed: 11922267
Lampreht Tratar U.; Horvat S.; Cemazar M.; Transgenic mouse models in cancer research. Front Oncol 2018,8,268
doi: 10.3389/fonc.2018.00268
pubmed: 30079312
Arber S.; Hunter J.J.; Ross J.; Hongo M.; Sansig G.; Borg J.; Perriard J.C.; Chien K.R.; Caroni P.; MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997,88(3),393-403
doi: 10.1016/S0092-8674(00)81878-4
pubmed: 9039266
Kubota T.; McTiernan C.F.; Frye C.S.; Slawson S.E.; Lemster B.H.; Koretsky A.P.; Demetris A.J.; Feldman A.M.; Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 1997,81(4),627-635
doi: 10.1161/01.RES.81.4.627
pubmed: 9314845
Weinstein D.M.; Mihm M.J.; Bauer J.A.; Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 2000,294(1),396-401
pubmed: 10871338
Robert J.; Long-term and short-term models for studying anthracycline cardiotoxicity and protectors. Cardiovasc Toxicol 2007,7(2),135-139
doi: 10.1007/s12012-007-0022-4
pubmed: 17652818
Shan J.; Kushnir A.; Betzenhauser M.J.; Reiken S.; Li J.; Lehnart S.E.; Lindegger N.; Mongillo M.; Mohler P.J.; Marks A.R.; Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice. J Clin Invest 2010,120(12),4388-4398
doi: 10.1172/JCI32726
pubmed: 21099118
Wang Q.D.; Bohlooly M.; Sjöquist P.O.; Murine models for the study of congestive heart failure: Implications for understanding molecular mechanisms and for drug discovery. J Pharmacol Toxicol Methods 2004,50(3),163-174
doi: 10.1016/j.vascn.2004.05.005
pubmed: 15519903
Angert D.; Berretta R.M.; Kubo H.; Zhang H.; Chen X.; Wang W.; Ogorek B.; Barbe M.; Houser S.R.; Repair of the injured adult heart involves new myocytes potentially derived from resident cardiac stem cells. Circ Res 2011,108(10),1226-1237
doi: 10.1161/CIRCRESAHA.110.239046
pubmed: 21454756
Bristow M.R.; Sageman W.S.; Scott R.H.; Billingham M.E.; Bowden R.E.; Kernoff R.S.; Snidow G.H.; Daniels J.R.; Acute and chronic cardiovascular effects of doxorubicin in the dog: The cardiovascular pharmacology of drug-induced histamine release. J Cardiovasc Pharmacol 1980,2(5),487-516
doi: 10.1097/00005344-198009000-00002
pubmed: 6157945
Gorini S.; De Angelis A.; Berrino L.; Malara N.; Rosano G.; Ferraro E.; Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev 2018,2018,1-15
doi: 10.1155/2018/7582730
pubmed: 29743983
Lother A.; Bergemann S.; Kowalski J.; Huck M.; Gilsbach R.; Bode C.; Hein L.; Inhibition of the cardiac myocyte mineralocorticoid receptor ameliorates doxorubicin-induced cardiotoxicity. Cardiovasc Res 2018,114(2),282-290
doi: 10.1093/cvr/cvx078
pubmed: 28430882
Zhu W.; Reuter S.; Field L.J.; Targeted expression of cyclin D2 ameliorates late stage anthracycline cardiotoxicity. Cardiovasc Res 2019,115(5),960-965
doi: 10.1093/cvr/cvy273
pubmed: 30423020
Hullin R.; Métrich M.; Sarre A.; Basquin D.; Maillard M.; Regamey J.; Martin D.; Diverging effects of enalapril or eplerenone in primary prevention against doxorubicin-induced cardiotoxicity. Cardiovasc Res 2018,114(2),272-281
doi: 10.1093/cvr/cvx162
pubmed: 29016737
Hayward R.; Hydock D.S.; Doxorubicin cardiotoxicity in the rat: an in vivo characterization. J Am Assoc Lab Anim Sci 2007,46(4),20-32
pubmed: 17645292
Matsumura N.; Zordoky B.N.; Robertson I.M.; Hamza S.M.; Parajuli N.; Soltys C.L.M.; Beker D.L.; Grant M.K.; Razzoli M.; Bartolomucci A.; Dyck J.R.B.; Co-administration of resveratrol with doxorubicin in young mice attenuates detrimental late-occurring cardiovascular changes. Cardiovasc Res 2018,114(10),1350-1359
doi: 10.1093/cvr/cvy064
pubmed: 29566148
Robert J.; Preclinical assessment of anthracycline cardiotoxicity in laboratory animals: Predictiveness and pitfalls. Cell Biol Toxicol 2007,23(1),27-37
doi: 10.1007/s10565-006-0142-9
pubmed: 17041747
Nakahara T.; Tanimoto T.; Petrov A.D.; Ishikawa K.; Strauss H.W.; Narula J.; Rat model of cardiotoxic drug-induced cardiomyopathy. Methods Mol Biol 2018,1816,221-232
doi: 10.1007/978-1-4939-8597-5_17
pubmed: 29987823
Todorova V.K.; Beggs M.L.; Delongchamp R.R.; Dhakal I.; Makhoul I.; Wei J.Y.; Klimberg V.S.; Transcriptome profiling of peripheral blood cells identifies potential biomarkers for doxorubicin cardiotoxicity in a rat model. PLoS One 2012,7(11),e48398-e14
doi: 10.1371/journal.pone.0048398
pubmed: 23209553
Aygun H.; Gul S.S.; Cardioprotective effect of melatonin and agomelatine on doxorubicin-induced cardiotoxicity in a rat model: An electrocardiographic, scintigraphic and biochemical study. Bratisl Med J 2019,120(4),249-255
doi: 10.4149/BLL_2019_045
pubmed: 31023046
Barış, V.Ö; Gedikli, E.; Yersal, N.; Müftüoğlu, S.; Erdem, A. Protective effect of taurine against doxorubicin-induced cardiotoxicity in rats: echocardiographical and histological findings. Amino Acids 2019,51(10-12),1649-1655
doi: 10.1007/s00726-019-02801-7
pubmed: 31673792
Chakouri N.; Farah C.; Matecki S.; Amedro P.; Vincenti M.; Saumet L.; Vergely L.; Sirvent N.; Lacampagne A.; Cazorla O.; Screening for in-vivo regional contractile defaults to predict the delayed Doxorubicin Cardiotoxicity in Juvenile Rat. Theranostics 2020,10(18),8130-8142
doi: 10.7150/thno.47407
pubmed: 32724462
Sharma A.; Parikh M.; Shah H.; Gandhi T.; Modulation of nrf2 by quercetin in doxorubicin-treated rats. Heliyon 2020,6(4),e03803
doi: 10.1016/j.heliyon.2020.e03803
Fraccarollo D.; Berger S.; Galuppo P.; Kneitz S.; Hein L.; Schütz G.; Frantz S.; Ertl G.; Bauersachs J.; Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 2011,123(4),400-408
doi: 10.1161/CIRCULATIONAHA.110.983023
pubmed: 21242479
Frantz S.; Hofmann U.; Fraccarollo D.; Schäfer A.; Kranepuhl S.; Hagedorn I.; Nieswandt B.; Nahrendorf M.; Wagner H.; Bayer B.; Pachel C.; Schön M.P.; Kneitz S.; Bobinger T.; Weidemann F.; Ertl G.; Bauersachs J.; Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J 2013,27(3),871-881
doi: 10.1096/fj.12-214049
pubmed: 23159933
Galuppo P.; Vettorazzi S.; Hövelmann J.; Scholz C.J.; Tuckermann J.P.; Bauersachs J.; Fraccarollo D.; The glucocorticoid receptor in monocyte‐derived macrophages is critical for cardiac infarct repair and remodeling. FASEB J 2017,31(11),5122-5132
doi: 10.1096/fj.201700317R
pubmed: 28768721
Thackeray J.T.; Hupe H.C.; Wang Y.; Bankstahl J.P.; Berding G.; Ross T.L.; Bauersachs J.; Wollert K.C.; Bengel F.M.; Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol 2018,71(3),263-275
doi: 10.1016/j.jacc.2017.11.024
pubmed: 29348018
Thum T.; Gross C.; Fiedler J.; Fischer T.; Kissler S.; Bussen M.; Galuppo P.; Just S.; Rottbauer W.; Frantz S.; Castoldi M.; Soutschek J.; Koteliansky V.; Rosenwald A.; Basson M.A.; Licht J.D.; Pena J.T.R.; Rouhanifard S.H.; Muckenthaler M.U.; Tuschl T.; Martin G.R.; Bauersachs J.; Engelhardt S.; MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008,456(7224),980-984
doi: 10.1038/nature07511
pubmed: 19043405
Hu P.; Zhang D.; Swenson L.; Chakrabarti G.; Abel E.D.; Litwin S.E.; Minimally invasive aortic banding in mice: Effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol 2003,285(3),H1261-H1269
doi: 10.1152/ajpheart.00108.2003
pubmed: 12738623
Dart C.H.; Holloszy J.O.; Hypertrophied non-failing rat heart; partial biochemical characterization. Circ Res 1969,25(3),245-253
doi: 10.1161/01.RES.25.3.245
pubmed: 4390410
Dempsey E.C.; Newton A.C.; Mochly-Rosen D.; Fields A.P.; Reyland M.E.; Insel P.A.; Messing R.O.; Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol 2000,279(3),L429-L438
doi: 10.1152/ajplung.2000.279.3.L429
pubmed: 10956616
Hahn H.S.; Marreez Y.; Odley A.; Sterbling A.; Yussman M.G.; Hilty K.C.; Bodi I.; Liggett S.B.; Schwartz A.; Dorn G.W.; Protein kinase calpha negatively regulates systolic and diastolic function in pathological hypertrophy. Circ Res 2003,93(11),1111-1119
doi: 10.1161/01.RES.0000105087.79373.17
pubmed: 14605019
Braz J.C.; Gregory K.; Pathak A.; Zhao W.; Sahin B.; Klevitsky R.; Kimball T.F.; Lorenz J.N.; Nairn A.C.; Liggett S.B.; Bodi I.; Wang S.; Schwartz A.; Lakatta E.G.; DePaoli-Roach A.A.; Robbins J.; Hewett T.E.; Bibb J.A.; Westfall M.V.; Kranias E.G.; Molkentin J.D.; PKC-α regulates cardiac contractility and propensity toward heart failure. Nat Med 2004,10(3),248-254
doi: 10.1038/nm1000
pubmed: 14966518
Jeong D.; Cha H.; Kim E.; Kang M.; Yang D.K.; Kim J.M.; Yoon P.O.; Oh J.G.; Bernecker O.Y.; Sakata S.; Thu L.T.; Cui L.; Lee Y.H.; Kim D.H.; Woo S.H.; Liao R.; Hajjar R.J.; Park W.J.; PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res 2006,99(3),307-314
doi: 10.1161/01.RES.0000234780.06115.2c
pubmed: 16809552
Kubota T.; Bounoutas G.S.; Miyagishima M.; Kadokami T.; Sanders V.J.; Bruton C.; Robbins P.D.; McTiernan C.F.; Feldman A.M.; Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation 2000,101(21),2518-2525
doi: 10.1161/01.CIR.101.21.2518
pubmed: 10831527
Li Y.Y.; Feng Y.Q.; Kadokami T.; McTiernan C.F.; Draviam R.; Watkins S.C.; Feldman A.M.; Myocardial extracellularmatrix remodeling in transgenic mice overexpressing tumor necrosis factor a can be modulated by anti-tumor necrosis factor a therapy. Proc Natl Acad Sci 2000,97(23),12746-12751
doi: 10.1073/pnas.97.23.12746
pubmed: 11070088
Tachjian A.; Maria V.; Jahangir A.; Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cardiol 2010,55(6),515-525
doi: 10.1016/j.jacc.2009.07.074
pubmed: 20152556
Frishman W.H.; Beravol P.; Carosella C.; Alternative and complementary medicine for preventing and treating cardiovascular disease. Dis Mon 2009,55(3),121-192
doi: 10.1016/j.disamonth.2008.12.002
pubmed: 19215737
Chakraborty P.; Airborne pollen of Bombax ceiba L.: An important source of aeroallergen from India. J Palynol Vol 2017,53,139-147
Nitika G.; Meena A.; Jaspreet N.; Evaluation of physicochemical and preliminary phytochemical studies on the root of Bombax ceiba Linn. Int J Res Ayurveda Pharm 2011,2(3),924-926
Patel S.S.; Verma N.K.; Rathore B.; Nayak G.; Singhai A.K.; Singh P.; Cardioprotective effect of Bombax ceiba flowers against acute adriamycin-induced myocardial infarction in rats. Rev Bras Farmacogn 2011,21(4),704-709
doi: 10.1590/S0102-695X2011005000090
Intararuchikul T.; Teerapattarakan N.; Rodsiri R.; Tantisira M.; Wohlgemuth G.; Fiehn O.; Tansawat R.; Effects of Centella asiatica extract on antioxidant status and liver metabolome of rotenone-treated rats using GC-MS. Biomed Chromatogr 2019,33(2),e4395
doi: 10.1002/bmc.4395
pubmed: 30242859
Hamid K.; Ng I.; Tallapragada V.J.; Váradi L.; Hibbs D.E.; Hanrahan J.; Groundwater P.W.; An investigation of the differential effects of ursane triterpenoids from Centella asiatica, and their semisynthetic analogues, on GABAA receptors. Chem Biol Drug Des 2016,88(3),386-397
doi: 10.1111/cbdd.12766
pubmed: 27062315
Gnanapragasam A.; Kumar Ebenezar K.; Sathish V.; Govindaraju P.; Devaki T.; Protective effect of Centella asiatica on antioxidant tissue defense system against adriamycin induced cardiomyopathy in rats. Life Sci 2004,76(5),585-597
doi: 10.1016/j.lfs.2004.09.009
pubmed: 15556170
Pragada R.R.; Veeravalli K.K.; Chowdary K.P.R.; Routhu K.V.; Cardioprotective activity of Hydrocotyle asiatica L. in ischemia-reperfusion induced myocardial infarction in rats. J Ethnopharmacol 2004,93(1),105-108
doi: 10.1016/j.jep.2004.03.025
pubmed: 15182913
Abbas Z.K.; Saggu S.; Sakeran M.I.; Zidan N.; Rehman H.; Ansari A.A.; Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J Biol Sci 2015,22(3),322-326
doi: 10.1016/j.sjbs.2014.11.015
pubmed: 25972754
Nayeemunnisa; Rani, MK Cardioprotective effects of cichorium intybus in ageing myocardium of albino rats. Curr Sci 2003,84(7),941-943
Mridula K.; Parthibhan S.; Senthil Kumar T.; Rao M.V.; In vitro organogenesis from Tinospora cordifolia (Willd.) Miers — A highly valuable medicinal plant. S Afr J Bot 2017,113,84-90
doi: 10.1016/j.sajb.2017.08.003
Upadhyay A.; Kumar K.; Kumar A.; Mishra H.; Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res 2010,1(2),112-121
doi: 10.4103/0974-7788.64405
pubmed: 20814526
Ahmed Q.; Gupta N.; Kumar A.; Nimesh S.; Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract. Artif Cells Nanomed Biotechnol 2017,45(6),1192-1200
doi: 10.1080/21691401.2016.1215328
pubmed: 27684206
Aqil F.; Ahmad I.; Mehmood Z.; Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants. Turk J Biol 2006,30(3),177-183
Bishop S.; Liu S.J.; Cardioprotective action of the aqueous extract of Terminalia arjuna bark against toxicity induced by doxorubicin. Phytomedicine 2017,36,210-216
doi: 10.1016/j.phymed.2017.10.007
pubmed: 29157817
Sultan P.; Rasool S.; Hassan Q.P.; PicrorhizakurroaRoyle ex Benth. A plant of diverse pharmacological potential. Ann Phytomed 2017,VI(I),63-67
doi: 10.21276/ap.2017.6.1.9
Shukla B.; Visen P.; Patnaik G.; Dhawan B.; Choleretic effect of picroliv, the hepatoprotective principle of Picrorhiza kurroa. Planta Med 1991,57(1),29-33
doi: 10.1055/s-2006-960010
pubmed: 2062954
Anandan R; Rekha RD; Devaki T; Kumar MS; Biochemical studies on the protective effects of Picrorhiza kurroa in experimentally induced hepatitis in rats. J. Clin. Biochem. Nutr., 2000,29,09-17
doi: 10.3164/jcbn.29.9
Sharma R.K.; Kotoky R.; Bhattacharyya P.R.; Volatile oil from the leaves of Callistemon lanceolatus D.C. grown in north-eastern India. Flavour Fragrance J 2006,21(2),239-240
doi: 10.1002/ffj.1564
Sudhakar M.; Rao C.V.; Rao A.L.; Raju D.B.; Antinociceptive and anti-inflammatory effects of the standardized oil of Indian Callistemon lanceolatus leaves in experimental animals. Acta Pharmaceutica Turcica 2004,46,131-139
doi: 10.4314/ecajps.v7i1.9706
Kim J.H.; Byun J.C.; Bandi A.K.R.; Hyun C.G.; Lee N.H.; Compounds with elastase inhibition and free radical scavenging activities from Callistemon lanceolatus. J Med Plants Res 2009,3,914-920
doi: 10.5897/JMPR.9000404
Kumar S.; Kumar V.; Prakash O.; Antidiabetic, hypolipidemic and antioxidant activities of Callistemon lanceolatus leaves extract. J Herbs Spices Med Plants 2011,17(2),144-153
doi: 10.1080/10496475.2011.583139
Ali N.; Syed W.A.S.; Ahmad B.; Calcium channel blocking activity of fruits of Callistemon citrinus. J Chem Soc Pak 2011,33,245-248
Firoz M.; Bharatesh K.; Nilesh P.; Vijay G.; Tabassum S.; Nilofar N.; Cardioprotective activity of ethanolic extract of Callistemon lanceolatus leaves on doxorubicin-induced cardiomyopathy in rats. Bangladesh J Pharmacol 2011,6(1)
doi: 10.3329/bjp.v6i1.8154
Yan Y.X.; Hu X.D.; Chen J.C.; Sun Y.; Zhang X.M.; Qing C.; Qiu M.H.; Cytotoxic triterpenoid alkaloids from Buxus microphylla. J Nat Prod 2009,72(2),308-311
doi: 10.1021/np800719h
pubmed: 19133780
Yu B.; Fang T.H.; Lü G.H.; Xu H.Q.; Lu J.F.; Beneficial effect of cyclovirobuxine D on heart failure rats following myocardial infarction. Fitoterapia 2011,82(6),868-877
doi: 10.1016/j.fitote.2011.04.016
pubmed: 21575690
Hamza A.; Amin A.; Daoud S.; The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 2008,24(1),63-73
doi: 10.1007/s10565-007-9016-z
pubmed: 17520333
Thomas D.E.; Wheeler R.; Yousef Z.R.; Masani N.D.; The role of echocardiography in guiding management in dilated cardiomyopathy. Eur J Echocardiogr 2009,10(8),iii15-iii21
doi: 10.1093/ejechocard/jep158
pubmed: 19889654
Silva Marques J.; Pinto F.J.; Clinical use of multimodality imaging in the assessment of dilated cardiomyopathy. Heart 2015,101(7),565-572
doi: 10.1136/heartjnl-2013-304539
pubmed: 24973082
Francone M.; Role of cardiac magnetic resonance in the evaluation of dilated cardiomyopathy: diagnostic contribution and prognostic significance. ISRN Radiol 2014,2014,1-16
doi: 10.1155/2014/365404
pubmed: 24967294
Lang R.M.; Badano L.P.; Mor-Avi V.; Afilalo J.; Armstrong A.; Ernande L.; Flachskampf F.A.; Foster E.; Goldstein S.A.; Kuznetsova T.; Lancellotti P.; Muraru D.; Picard M.H.; Rietzschel E.R.; Rudski L.; Spencer K.T.; Tsang W.; Voigt J.U.; Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015,16(3),233-271
doi: 10.1093/ehjci/jev014
pubmed: 25712077
O’Gara P.T.; Grayburn P.A.; Badhwar V.; Afonso L.C.; Carroll J.D.; Elmariah S.; Kithcart A.P.; Nishimura R.A.; Ryan T.J.; Schwartz A.; Stevenson L.W.; 2017 ACC expert consensus decision pathway on the management of mitral regurgitation. J Am Coll Cardiol 2017,70(19),2421-2449
doi: 10.1016/j.jacc.2017.09.019
pubmed: 29055505
Rossi A.; Dini F.L.; Faggiano P.; Agricola E.; Cicoira M.; Frattini S.; Simioniuc A.; Gullace M.; Ghio S.; Enriquez-Sarano M.; Temporelli P.L.; Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 2011,97(20),1675-1680
doi: 10.1136/hrt.2011.225789
pubmed: 21807656
Jenkins C.; Bricknell K.; Hanekom L.; Marwick T.H.; Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 2004,44(4),878-886
doi: 10.1016/j.jacc.2004.05.050
pubmed: 15312875
Ghio S.; Recusani F.; Klersy C.; Sebastiani R.; Laudisa M.L.; Campana C.; Gavazzi A.; Tavazzi L.; Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 2000,85(7),837-842
doi: 10.1016/S0002-9149(99)00877-2
pubmed: 10758923
Merlo M.; Gobbo M.; Stolfo D.; Losurdo P.; Ramani F.; Barbati G.; Pivetta A.; Di Lenarda A.; Anzini M.; Gigli M.; Pinamonti B.; Sinagra G.; The prognostic impact of the evolution of RV function in idiopathic DCM. JACC Cardiovasc Imaging 2016,9(9),1034-1042
doi: 10.1016/j.jcmg.2016.01.027
pubmed: 27344413
Merlo M.; Caiffa T.; Gobbo M.; Adamo L.; Sinagra G.; Reverse remodeling in dilated cardiomyopathy: Insights and future perspectives. Int J Cardiol Heart Vasc 2018,18,52-57
doi: 10.1016/j.ijcha.2018.02.005
pubmed: 29876504
Merlo M.; Pyxaras S.A.; Pinamonti B.; Barbati G.; Di Lenarda A.; Sinagra G.; Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 2011,57(13),1468-1476
doi: 10.1016/j.jacc.2010.11.030
pubmed: 21435516
Pitzalis M.V.; Iacoviello M.; Romito R.; Massari F.; Rizzon B.; Luzzi G.; Guida P.; Andriani A.; Mastropasqua F.; Rizzon P.; Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 2002,40,1615-1622
doi: 10.1016/S0735-1097(02)02337-9
Bleeker G.B.; Schalij M.J.; Boersma E.; Holman E.R.; Steendijk P.; van der Wall E.E.; Bax J.J.; Relative merits of M-mode echocardiography and tissue Doppler imaging for prediction of response to cardiac resynchronization therapy in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2007,99(1),68-74
doi: 10.1016/j.amjcard.2006.07.068
pubmed: 17196465
Richardson M.; Freemantle N.; Calvert M.J.; Cleland J.G.F.; Tavazzi L.; Predictors and treatment response with cardiac resynchronization therapy in patients with heart failure characterized by dyssynchrony: a pre-defined analysis from the CARE-HF trial. Eur Heart J 2007,28(15),1827-1834
doi: 10.1093/eurheartj/ehm192
pubmed: 17540848
McMurray J.J.V.; Adamopoulos S.; Anker S.D.; Auricchio A.; Böhm M.; Dickstein K.; Falk V.; Filippatos G.; Fonseca C.; Gomez-Sanchez M.A.; Jaarsma T.; Køber L.; Lip G.Y.H.; Maggioni A.P.; Parkhomenko A.; Pieske B.M.; Popescu B.A.; Rønnevik P.K.; Rutten F.H.; Schwitter J.; Seferovic P.; Stepinska J.; Trindade P.T.; Voors A.A.; Zannad F.; Zeiher A.; Bax J.J.; Baumgartner H.; Ceconi C.; Dean V.; Deaton C.; Fagard R.; Funck-Brentano C.; Hasdai D.; Hoes A.; Kirchhof P.; Knuuti J.; Kolh P.; McDonagh T.; Moulin C.; Popescu B.A.; Reiner Z.; Sechtem U.; Sirnes P.A.; Tendera M.; Torbicki A.; Vahanian A.; Windecker S.; McDonagh T.; Sechtem U.; Bonet L.A.; Avraamides P.; Ben Lamin H.A.; Brignole M.; Coca A.; Cowburn P.; Dargie H.; Elliott P.; Flachskampf F.A.; Guida G.F.; Hardman S.; Iung B.; Merkely B.; Mueller C.; Nanas J.N.; Nielsen O.W.; Orn S.; Parissis J.T.; Ponikowski P.; ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. developed in collaboration with the heart failure association (hfa) of the ESC. Eur Heart J 2012,33(14),1787-1847
doi: 10.1093/eurheartj/ehs104
pubmed: 22611136
Japp A.G.; Gulati A.; Cook S.A.; Cowie M.R.; Prasad S.K.; The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol 2016,67(25),2996-3010
doi: 10.1016/j.jacc.2016.03.590
pubmed: 27339497
Strohm O.; Schulz-Menger J.; Pilz B.; Osterziel K.J.; Dietz R.; Friedrich M.G.; Measurement of left ventricular dimensions and function in patients with dilated cardiomyopathy. J Magn Reson Imaging 2001,13(3),367-371
doi: 10.1002/jmri.1052
pubmed: 11241808
Iles L.M.; Ellims A.H.; Llewellyn H.; Hare J.L.; Kaye D.M.; McLean C.A.; Taylor A.J.; Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 2015,16(1),14-22
doi: 10.1093/ehjci/jeu182
pubmed: 25354866
Schalla S.; Bekkers S.C.; Dennert R.; van Suylen R.J.; Waltenberger J.; Leiner T.; Wildberger J.; Crijns H.J.; Heymans S.; Replacement and reactive myocardial fibrosis in idiopathic dilated cardiomyopathy: Comparison of magnetic resonance imaging with right ventricular biopsy. Eur J Heart Fail 2010,12(3),227-231
doi: 10.1093/eurjhf/hfq004
pubmed: 20156939
McCrohon J.A.; Moon J.C.C.; Prasad S.K.; McKenna W.J.; Lorenz C.H.; Coats A.J.S.; Pennell D.J.; Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003,108(1),54-59
doi: 10.1161/01.CIR.0000078641.19365.4C
pubmed: 12821550
de Leeuw N.; Ruiter D.J.; Balk A.H.M.M.; de Jonge N.; Melchers W.J.G.; Galama J.M.D.; Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int 2001,14(5),299-306
doi: 10.1007/s001470100339
pubmed: 11692213
Soriano C.J.; Ridocci F.; Estornell J.; Jimenez J.; Martinez V.; de Velasco J.A.; Noninvasive diagnosis of coronary artery disease in patients with heart failure and systolic dysfunction of uncertain etiology, using late gadolinium-enhanced cardiovascular magnetic resonance. J Am Coll Cardiol 2005,45(5),743-748
doi: 10.1016/j.jacc.2004.11.037
pubmed: 15734620
Assomull R.G.; Shakespeare C.; Kalra P.R.; Lloyd G.; Gulati A.; Strange J.; Bradlow W.M.; Lyne J.; Keegan J.; Poole-Wilson P.; Cowie M.R.; Pennell D.J.; Prasad S.K.; Role of cardiovascular magnetic resonance as a gatekeeper to invasive coronary angiography in patients presenting with heart failure of unknown etiology. Circulation 2011,124(12),1351-1360
doi: 10.1161/CIRCULATIONAHA.110.011346
pubmed: 21900085
Mahrholdt H.; Wagner A.; Judd R.M.; Sechtem U.; Kim R.J.; Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 2005,26(15),1461-1474
doi: 10.1093/eurheartj/ehi258
pubmed: 15831557
Kim W.Y.; Danias P.G.; Stuber M.; Flamm S.D.; Plein S.; Nagel E.; Langerak S.E.; Weber O.M.; Pedersen E.M.; Schmidt M.; Botnar R.M.; Manning W.J.; Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001,345(26),1863-1869
doi: 10.1056/NEJMoa010866
pubmed: 11756576
Bruder O.; Schneider S.; Nothnagel D.; Pilz G.; Lombardi M.; Sinha A.; Wagner A.; Dill T.; Frank H.; van Rossum A.; Schwitter J.; Nagel E.; Senges J.; Sabin G.; Sechtem U.; Mahrholdt H.; Acute adverse reactions to gadolinium-based contrast agents in CMR: multicenter experience with 17,767 patients from the EuroCMR Registry. JACC Cardiovasc Imaging 2011,4(11),1171-1176
doi: 10.1016/j.jcmg.2011.06.019
pubmed: 22093267