Icos gene disruption in non-obese diabetic mice elicits myositis associated with anti-troponin T3 autoantibodies.


Journal

Neuropathology and applied neurobiology
ISSN: 1365-2990
Titre abrégé: Neuropathol Appl Neurobiol
Pays: England
ID NLM: 7609829

Informations de publication

Date de publication:
02 2023
Historique:
revised: 01 02 2023
received: 21 06 2022
accepted: 05 02 2023
pubmed: 9 2 2023
medline: 3 3 2023
entrez: 8 2 2023
Statut: ppublish

Résumé

Idiopathic inflammatory myopathies (IIM) are autoimmune inflammatory disorders leading to skeletal muscle weakness and disability. The pathophysiology of IIM is poorly understood due to the scarcity of animal disease models. Genetic deletion of Icos or Icosl (inducible T cell co-stimulator/ligand) in non-obese diabetic (NOD) mice leads to muscle disease. Our aim was to characterise Icos Diabetes, weight, myopathy incidence/clinical score and grip strength were assessed over time. Locomotor activity was analysed with the Catwalk XT gait analysis system. Muscle histology was evaluated in haematoxylin/eosin and Sirius red-stained sections, and immune infiltrates were characterised by immunofluorescence and flow cytometry. 2D gel electrophoresis of muscle protein extracts and mass spectrometry were used to identify novel aAbs. NOD mice were immunised with troponin T3 (TNNT3) in incomplete Freund's adjuvant (IFA) and R848. An addressable laser bead immunoassay (ALBIA) was developed to measure aAb IgG serum levels. Icos These data show that Icos

Identifiants

pubmed: 36751013
doi: 10.1111/nan.12889
doi:

Substances chimiques

Autoantibodies 0
Troponin T 0
Icos protein, mouse 0
Inducible T-Cell Co-Stimulator Protein 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12889

Informations de copyright

© 2023 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

Références

Simon JP, Marie I, Jouen F, Boyer O, Martinet J. Autoimmune myopathies: where do we stand? Front Immunol. 2016;7:234.
Damoiseaux J, Mammen AL, Piette Y, Benveniste O, Allenbach Y, ENMC 256th Workshop Study Group. 256th ENMC international workshop: myositis specific and associated autoantibodies (MSA-ab): Amsterdam, the Netherlands, 8-10 October 2021. Neuromuscul Disord NMD. S0960-8966(22):00148-1.
Betteridge Z, McHugh N. Myositis-specific autoantibodies: an important tool to support diagnosis of myositis. J Intern Med. 2016;280(1):8-23. doi:10.1111/joim.12451
Afzali AM, Ruck T, Wiendl H, Meuth SG. Animal models in idiopathic inflammatory myopathies: how to overcome a translational roadblock? Autoimmun Rev. 2017;16(5):478-494. doi:10.1016/j.autrev.2017.03.001
Emslie-Smith AM, Arahata K, Engel AG. Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum Pathol. 1989;20(3):224-231. doi:10.1016/0046-8177(89)90128-7
Nagaraju K, Raben N, Loeffler L, et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci U S A. 2000;97(16):9209-9214. doi:10.1073/pnas.97.16.9209
Fréret M, Drouot L, Obry A, et al. Overexpression of MHC class I in muscle of lymphocyte-deficient mice causes a severe myopathy with induction of the unfolded protein response. Am J Pathol. 2013;183(3):893-904. doi:10.1016/j.ajpath.2013.06.003
Fukuchi K, Pham D, Hart M, Li L, Lindsey JR. Amyloid-β deposition in skeletal muscle of transgenic mice: possible model of inclusion body myopathy. Am J Pathol. 1998;153(6):1687-1693. doi:10.1016/S0002-9440(10)65682-9
Jin LW, Hearn MG, Ogburn CE, et al. Transgenic mice over-expressing the C-99 fragment of βPP with an α-secretase site mutation develop a myopathy similar to human inclusion body myositis. Am J Pathol. 1998;153(6):1679-1686. doi:10.1016/S0002-9440(10)65681-7
Sugarman MC, Yamasaki TR, Oddo S, et al. Inclusion body myositis-like phenotype induced by transgenic overexpression of βAPP in skeletal muscle. Proc Natl Acad Sci U S A. 2002;99(9):6334-6339. doi:10.1073/pnas.082545599
Prevot N, Briet C, Lassmann H, et al. Abrogation of ICOS/ICOS ligand costimulation in NOD mice results in autoimmune deviation toward the neuromuscular system. Eur J Immunol. 2010;40(8):2267-2276. doi:10.1002/eji.201040416
Briet C, Bourdenet G, Rogner UC, et al. The spontaneous autoimmune neuromyopathy in ICOSL−/− NOD mice is CD4+ T-cell and interferon-γ dependent. Front Immunol. 2017;8:287. doi:10.3389/fimmu.2017.00287
Bourdenet G, Dubourg B, Nicol L, et al. Value of magnetic resonance imaging for evaluating muscle inflammation: insights from a new mouse model of myositis. Neuropathol Appl Neurobiol. 2018;44(5):537-540. doi:10.1111/nan.12457
Lartigue A, Drouot L, Jouen F, Charlionet R, Tron F, Gilbert D. Association between anti-nucleophosmin and anti-cardiolipin antibodies in (NZW × BXSB)F1 mice and human systemic lupus erythematosus. Arthritis Res Ther. 2005;7(6):R1394-R1403. doi:10.1186/ar1838
Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today. 1993;14(9):426-430. doi:10.1016/0167-5699(93)90244-F
Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431-440. doi:10.1016/S1074-7613(00)80195-8
Alyanakian MA, You S, Damotte D, et al. Diversity of regulatory CD4+ T cells controlling distinct organ-specific autoimmune diseases. Proc Natl Acad Sci U S A. 2003;100(26):15806-15811. doi:10.1073/pnas.2636971100
Aoki CA, Borchers AT, Ridgway WM, Keen CL, Ansari AA, Gershwin ME. NOD mice and autoimmunity. Autoimmun Rev. 2005;4(6):373-379. doi:10.1016/j.autrev.2005.02.002
Salomon B, Rhee L, Bour-Jordan H, et al. Development of spontaneous autoimmune peripheral polyneuropathy in B7-2-deficient NOD mice. J Exp Med. 2001;194(5):677-684. doi:10.1084/jem.194.5.677
Wei B, Jin JP. TNNT1, TNNT2, and TNNT3: isoform genes, regulation, and structure-function relationships. Gene. 2016;582(1):1-13. doi:10.1016/j.gene.2016.01.006
Ochala J. Thin filament proteins mutations associated with skeletal myopathies: defective regulation of muscle contraction. J Mol Med Berl Ger. 2008;86(11):1197-1204. doi:10.1007/s00109-008-0380-9
Parker KC, Walsh RJ, Salajegheh M, et al. Characterization of human skeletal muscle biopsy samples using shotgun proteomics. J Proteome Res. 2009;8(7):3265-3277. doi:10.1021/pr800873q
Bergua C, Chiavelli H, Allenbach Y, et al. In vivo pathogenicity of IgG from patients with anti-SRP or anti-HMGCR autoantibodies in immune-mediated necrotising myopathy. Ann Rheum Dis. 2019;78(1):131-139. doi:10.1136/annrheumdis-2018-213518
Nombel A, Fabien N, Coutant F. Dermatomyositis with anti-MDA5 antibodies: bioclinical features, pathogenesis and emerging therapies. Front Immunol. 2021;12:773352. doi:10.3389/fimmu.2021.773352
Römisch K, Miller FW, Dobberstein B, High S. Human autoantibodies against the 54 kDa protein of the signal recognition particle block function at multiple stages. Arthritis Res Ther. 2006;8(2):R39. doi:10.1186/ar1895

Auteurs

Gwladys Bourdenet (G)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.

Baptiste Pileyre (B)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.

Laurent Drouot (L)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.

Jérémie Martinet (J)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.
CHU de Rouen, Departement of Immunology and Biotherapy, Rouen, France.

Chantal Bécourt (C)

Cochin Institute, INSERM U1016, Paris, France.

Marion Carrette (M)

CHU de Rouen, Departement of Immunology and Biotherapy, Rouen, France.

Gaétan Riou (G)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.

Cécile Bergua (C)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.

Thara Jaworski (T)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.

Philippe Chan (P)

Univ Rouen Normandie, INSERM US 51, CNRS UAR 2026, HeRacLeS-PISSARO, Rouen, France.

Laetitia Jean (L)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.

Manuel Fréret (M)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.
CHU de Rouen, Department of Rheumatology, Rouen, France.

Pascal Cosette (P)

Univ Rouen Normandie, INSERM US 51, CNRS UAR 2026, HeRacLeS-PISSARO, Rouen, France.
Univ Rouen Normandie, PISSARO, CNRS UMR6270, Rouen, France.

Christian Boitard (C)

Cochin Institute, INSERM U1016, Paris, France.

Catalina Abad (C)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.

Olivier Boyer (O)

Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.
CHU de Rouen, Departement of Immunology and Biotherapy, Rouen, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH