Future therapies for cystic fibrosis.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 02 2023
08 02 2023
Historique:
received:
07
02
2022
accepted:
20
01
2023
entrez:
8
2
2023
pubmed:
9
2
2023
medline:
11
2
2023
Statut:
epublish
Résumé
We are currently witnessing transformative change for people with cystic fibrosis with the introduction of small molecule, mutation-specific drugs capable of restoring function of the defective protein, cystic fibrosis transmembrane conductance regulator (CFTR). However, despite being a single gene disorder, there are multiple cystic fibrosis-causing genetic variants; mutation-specific drugs are not suitable for all genetic variants and also do not correct all the multisystem clinical manifestations of the disease. For many, there will remain a need for improved treatments. Those patients with gene variants responsive to CFTR modulators may have found these therapies to be transformational; research is now focusing on safely reducing the burden of symptom-directed treatment. However, modulators are not available in all parts of the globe, an issue which is further widening existing health inequalities. For patients who are not suitable for- or do not have access to- modulator drugs, alternative approaches are progressing through the trials pipeline. There will be challenges encountered in design and implementation of these trials, for which the established global CF infrastructure is a major advantage. Here, the Cystic Fibrosis National Research Strategy Group of the UK NIHR Respiratory Translational Research Collaboration looks to the future of cystic fibrosis therapies and consider priorities for future research and development.
Identifiants
pubmed: 36755044
doi: 10.1038/s41467-023-36244-2
pii: 10.1038/s41467-023-36244-2
pmc: PMC9907205
doi:
Substances chimiques
Cystic Fibrosis Transmembrane Conductance Regulator
126880-72-6
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
693Subventions
Organisme : Chief Scientist Office
ID : SCAF/16/02
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Organisme : Department of Health
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T041285/1
Pays : United Kingdom
Informations de copyright
© 2023. The Author(s).
Références
Castellani, C., Massie, J., Sontag, M. & Southern, K. W. Newborn screening for cystic fibrosis. Lancet Respir. Med. 4, 653–661 (2016).
doi: 10.1016/S2213-2600(16)00053-9
Barben, J. et al. The expansion and performance of national newborn screening programmes for cystic fibrosis in Europe. J. Cyst. Fibros. 16, 207–213 (2017).
doi: 10.1016/j.jcf.2016.12.012
Dijk, F. N., McKay, K., Barzi, F., Gaskin, K. J. & Fitzgerald, D. A. Improved survival in cystic fibrosis patients diagnosed by newborn screening compared to a historical cohort from the same centre. Arch. Dis. Child. 96, 1118–1123 (2011).
doi: 10.1136/archdischild-2011-300449
Kerem, E., Conway, S., Elborn, S., Heijerman, H. & Consensus, C. Standards of care for patients with cystic fibrosis: a European consensus. J. Cyst. Fibros. 4, 7–26 (2005).
doi: 10.1016/j.jcf.2004.12.002
Castellani, C. et al. ECFS best practice guidelines: the 2018 revision. J. Cyst. Fibros. 17, 153–178 (2018).
doi: 10.1016/j.jcf.2018.02.006
Yang, C. & Montgomery, M. Dornase alfa for cystic fibrosis. Cochrane Database Syst. Rev. 3, CD001127 (2021).
Wark, P. & McDonald, V. M. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst. Rev. 9, CD001506 (2018).
Nevitt, S. J., Thornton, J., Murray, C. S. & Dwyer, T. Inhaled mannitol for cystic fibrosis. Cochrane Database Syst. Rev. 5, CD008649 (2020).
Ratjen, F. et al. Inhaled hypertonic saline in preschool children with cystic fibrosis (SHIP): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 7, 802–809 (2019).
doi: 10.1016/S2213-2600(19)30187-0
Tiddens, H. et al. The effect of inhaled hypertonic saline on lung structure in children aged 3-6 years with cystic fibrosis (SHIP-CT): a multicentre, randomised, double-blind, controlled trial. Lancet Respir. Med. 10, 669–678 (2022).
doi: 10.1016/S2213-2600(21)00546-4
Thabut, G. et al. Survival benefit of lung transplant for cystic fibrosis since lung allocation score implementation. Am. J. Respiratory Crit. Care Med. 187, 1335–1340 (2013).
doi: 10.1164/rccm.201303-0429OC
Dasenbrook, E. C. & Sawicki, G. S. Cystic fibrosis patient registries: a valuable source for clinical research. J. Cyst. Fibros. 17, 433–440 (2018).
doi: 10.1016/j.jcf.2018.03.001
Trust, C. C. F. Trust registry annual report data 2020 (2020).
De Boeck, K., Bulteel, V. & Fajac, I. Disease-specific clinical trials networks: the example of cystic fibrosis. Eur. J. Pediatr. 175, 817–824 (2016).
doi: 10.1007/s00431-016-2712-z
Silva Filho, L. V., Castanos, C. & Ruiz, H. H. Cystic fibrosis in Latin America-Improving the awareness. J. Cyst. Fibros. 15, 791–793 (2016).
doi: 10.1016/j.jcf.2016.05.007
Keogh, R. H., Szczesniak, R., Taylor-Robinson, D. & Bilton, D. Up-to-date and projected estimates of survival for people with cystic fibrosis using baseline characteristics: A longitudinal study using UK patient registry data. J. Cyst. Fibros. 17, 218–227 (2018).
doi: 10.1016/j.jcf.2017.11.019
Veit, G. et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27, 424–433 (2016).
doi: 10.1091/mbc.e14-04-0935
Meng, X., Clews, J., Kargas, V., Wang, X. & Ford, R. C. The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol. Life Sci. 74, 23–38 (2017).
doi: 10.1007/s00018-016-2386-8
Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).
doi: 10.1016/0092-8674(95)90240-6
Van Goor, F. et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl Acad. Sci. USA 106, 18825–18830 (2009).
doi: 10.1073/pnas.0904709106
Ramsey, B. W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672 (2011).
doi: 10.1056/NEJMoa1105185
Wainwright, C. E. et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220–231 (2015).
doi: 10.1056/NEJMoa1409547
Donaldson, S. H. et al. Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am. J. Respir. Crit. Care Med. 197, 214–224 (2018).
doi: 10.1164/rccm.201704-0717OC
Keating, D. et al. VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N. Engl. J. Med. 379, 1612–1620 (2018).
doi: 10.1056/NEJMoa1807120
Middleton, P. G. et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 381, 1809–1819 (2019).
doi: 10.1056/NEJMoa1908639
Heijerman, H. G. M. et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 394, 1940–1948 (2019).
doi: 10.1016/S0140-6736(19)32597-8
Agency, E. M. Qualification Opinion on The European Cystic Fibrosis Society Patient Registry (ECFSPR) and CF Pharmaco-epidemiology Studies, https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/qualification-opinion-european-cystic-fibrosis-society-patient-registry-ecfspr-cf-pharmaco_en.pdf (2018).
Nichols, D. P. et al. Clinical effectiveness of elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis: a clinical trial. Am. J. Respir. Crit. Care Med. 205, 529–539 (2022).
doi: 10.1164/rccm.202108-1986OC
Mohindru, B. et al. Health state utility data in cystic fibrosis: a systematic review. Pharmacoecon. Open 4, 13–25 (2020).
doi: 10.1007/s41669-019-0144-1
Zainal Abidin, N., Haq, I. J., Gardner, A. I. & Brodlie, M. Ataluren in cystic fibrosis: development, clinical studies and where are we now. Expert Opin. Pharmacother. 18, 1363–1371 (2017).
doi: 10.1080/14656566.2017.1359255
Konstan, M. W. et al. Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: The international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF. J. Cyst. Fibros. 19, 595–601 (2020).
Pascual-Morena, C. et al. Restorative treatments of dystrophin expression in Duchenne muscular dystrophy: a systematic review. Ann. Clin. Transl. Neurol. 7, 1738–1752 (2020).
doi: 10.1002/acn3.51149
Crawford, D. K. et al. Targeting G542X CFTR nonsense alleles with ELX-02 restores CFTR function in human-derived intestinal organoids. J. Cyst. Fibros. 20, 436–442 (2021).
doi: 10.1016/j.jcf.2021.01.009
Liang, F. et al. High-throughput screening for readthrough modulators of CFTR PTC mutations. SLAS Technol. 22, 315–324 (2017).
doi: 10.1177/2472630317692561
Ko, W., Porter, J. J., Sipple, M. T., Edwards, K. M. & Lueck, J. D. Efficient suppression of endogenous CFTR nonsense mutations using anticodon-engineered transfer RNAs. Mol. Ther. Nucleic acids 28, 685–701 (2022).
doi: 10.1016/j.omtn.2022.04.033
Kim, Y. J. et al. Gene-specific nonsense-mediated mRNA decay targeting for cystic fibrosis therapy. Nat. Commun. 13, 2978 (2022).
doi: 10.1038/s41467-022-30668-y
Beumer, W. et al. Evaluation of eluforsen, a novel RNA oligonucleotide for restoration of CFTR function in in vitro and murine models of p.Phe508del cystic fibrosis. PloS one 14, e0219182 (2019).
doi: 10.1371/journal.pone.0219182
Sermet-Gaudelus, I. et al. Antisense oligonucleotide eluforsen improves CFTR function in F508del cystic fibrosis. J. Cyst. Fibros. 18, 536–542 (2019).
doi: 10.1016/j.jcf.2018.10.015
Oren, Y. S. et al. Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation. J. Cyst. Fibros. 20, 865–875 (2021).
doi: 10.1016/j.jcf.2021.06.003
Alton, E. W. et al. Genetic medicines for CF: Hype versus reality. Pediatr. Pulmonol. 51, S5–S17 (2016).
doi: 10.1002/ppul.23543
Alton, E. W. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 684–691 (2015).
doi: 10.1016/S2213-2600(15)00245-3
Alton, E. W. et al. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax 72, 137–147 (2017).
doi: 10.1136/thoraxjnl-2016-208406
Perrem, L. & Ratjen, F. Designing clinical trials for anti-inflammatory therapies in cystic fibrosis. Front Pharm. 11, 576293 (2020).
doi: 10.3389/fphar.2020.576293
Briottet, M., Shum, M. & Urbach, V. The role of specialized pro-resolving mediators in cystic fibrosis airways disease. Front Pharm. 11, 1290 (2020).
doi: 10.3389/fphar.2020.01290
Garratt, L. W. et al. Changes in airway inflammation with pseudomonas eradication in early cystic fibrosis. J. Cyst. Fibros. 20, 941–948 (2021).
doi: 10.1016/j.jcf.2020.12.015
Harris, J. K. et al. Changes in airway microbiome and inflammation with ivacaftor treatment in patients with cystic fibrosis and the g551d mutation. Ann. Am. Thorac. Soc. 17, 212–220 (2020).
doi: 10.1513/AnnalsATS.201907-493OC
Roesch, E. A., Nichols, D. P. & Chmiel, J. F. Inflammation in cystic fibrosis: an update. Pediatr. Pulmonol. 53, S30–S50 (2018).
doi: 10.1002/ppul.24129
Konstan, M. W. et al. A randomized double blind, placebo controlled phase 2 trial of BIIL 284 BS (an LTB4 receptor antagonist) for the treatment of lung disease in children and adults with cystic fibrosis. J. Cyst. Fibros. 13, 148–155 (2014).
doi: 10.1016/j.jcf.2013.12.009
Elborn, J. S. et al. Phase I studies of acebilustat: biomarker response and safety in patients with cystic fibrosis. Clin. Transl. Sci. 10, 28–34 (2017).
doi: 10.1111/cts.12428
Elborn, J. S. et al. Empire-CF study: A phase 2 clinical trial of leukotriene A4 hydrolase inhibitor acebilustat in adult subjects with cystic fibrosis. J. Cyst. Fibros. 20, 1026–1034 (2021).
doi: 10.1016/j.jcf.2021.08.007
Parker, J. et al. Suppression of human macrophage interleukin-6 by a nonpsychoactive cannabinoid acid. Rheumatol. Int 28, 631–635 (2008).
doi: 10.1007/s00296-007-0489-0
Chmiel, J. F. et al. Safety and efficacy of lenabasum in a phase 2 randomized, placebo-controlled trial in adults with cystic fibrosis. J. Cyst. Fibros. 20, 78–85 (2021).
doi: 10.1016/j.jcf.2020.09.008
Lucas, A., Yasa, J. & Lucas, M. Regeneration and repair in the healing lung. Clin. Transl. Immunol. 9, e1152 (2020).
doi: 10.1002/cti2.1152
Lechner, A. J. et al. Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy. Cell Stem Cell 21, 120–134.e127 (2017).
doi: 10.1016/j.stem.2017.03.024
Donne, M. L., Lechner, A. J. & Rock, J. R. Evidence for lung epithelial stem cell niches. BMC Dev. Biol. 15, 32 (2015).
doi: 10.1186/s12861-015-0082-9
Hoare, S. et al. Ivacaftor imaging response in cystic fibrosis. Am. J. Respir. Crit. Care Med. 189, 484 (2014).
doi: 10.1164/rccm.201308-1433IM
Martiniano, S. L. et al. Challenging scenarios in nontuberculous mycobacterial infection in cystic fibrosis. Pediatr. Pulmonol. 55, 521–525 (2020).
doi: 10.1002/ppul.24604
Shei, R. J., Peabody, J. E., Kaza, N. & Rowe, S. M. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis. Curr. Opin. Pharmacol. 43, 152–165 (2018).
doi: 10.1016/j.coph.2018.09.007
Mall, M. A. ENaC inhibition in cystic fibrosis: potential role in the new era of CFTR modulator therapies. The European respiratory journal 56, https://doi.org/10.1183/13993003.00946-2020 (2020).
Danahay, H. & Gosling, M. TMEM16A: An alternative approach to restoring airway anion secretion in cystic fibrosis? Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21072386 (2020).
van Koningsbruggen-Rietschel, S. et al. Inhaled dry powder alginate oligosaccharide in cystic fibrosis: a randomised, double-blind, placebo-controlled, crossover phase 2b study. ERJ Open Res 6, https://doi.org/10.1183/23120541.00132-2020 (2020).
Tarrant, B. J. et al. Mucoactive agents for chronic, non-cystic fibrosis lung disease: a systematic review and meta-analysis. Respirology 22, 1084–1092 (2017).
doi: 10.1111/resp.13047
McCormick, J. et al. Comparative demographics of the European cystic fibrosis population: a cross-sectional database analysis. Lancet 375, 1007–1013 (2010).
doi: 10.1016/S0140-6736(09)62161-9
Alves, C., Della-Manna, T. & Albuquerque, C. T. M. Cystic fibrosis-related diabetes: an update on pathophysiology, diagnosis, and treatment. J. Pediatr. Endocrinol. Metab. 33, 835–843 (2020).
doi: 10.1515/jpem-2019-0484
Putman, M. S., Anabtawi, A., Le, T., Tangpricha, V. & Sermet-Gaudelus, I. Cystic fibrosis bone disease treatment: current knowledge and future directions. J. Cyst. Fibros. 18, S56–S65 (2019).
doi: 10.1016/j.jcf.2019.08.017
Yamada, A. et al. Risk of gastrointestinal cancers in patients with cystic fibrosis: a systematic review and meta-analysis. Lancet Oncol. 19, 758–767 (2018).
doi: 10.1016/S1470-2045(18)30188-8
Hadjiliadis, D. et al. Cystic fibrosis colorectal cancer screening consensus recommendations. Gastroenterology 154, 736–745 e714 (2018).
doi: 10.1053/j.gastro.2017.12.012
Shteinberg, M., Haq, I. J., Polineni, D. & Davies, J. C. Cystic fibrosis. Lancet 397, 2195–2211 (2021).
doi: 10.1016/S0140-6736(20)32542-3
Cohen-Cymberknoh, M. et al. Baseline Cystic fibrosis disease severity has an adverse impact on pregnancy and infant outcomes, but does not impact disease progression. J. Cyst. Fibros. 20, 388–394 (2021).
doi: 10.1016/j.jcf.2020.09.002
Volkova, N. et al. Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries. J. Cyst. Fibros. 19, 68–79 (2020).
doi: 10.1016/j.jcf.2019.05.015
Hisert, K. B. et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am. J. Respir. Crit. Care Med. 195, 1617–1628 (2017).
doi: 10.1164/rccm.201609-1954OC
Thia, L. P. et al. Is chest CT useful in newborn screened infants with cystic fibrosis at 1 year of age? Thorax 69, 320–327 (2014).
doi: 10.1136/thoraxjnl-2013-204176
Aurora, P. et al. Lung clearance index at 4 years predicts subsequent lung function in children with cystic fibrosis. Am. J. respiratory Crit. care Med. 183, 752–758 (2011).
doi: 10.1164/rccm.200911-1646OC
Ramsey, K. A. et al. Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis. Am. J. respiratory Crit. care Med. 190, 1111–1116 (2014).
doi: 10.1164/rccm.201407-1277OC
Sly, P. D. et al. Risk factors for bronchiectasis in children with cystic fibrosis. N. Engl. J. Med. 368, 1963–1970 (2013).
doi: 10.1056/NEJMoa1301725
Rosenfeld, M. et al. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr. Pulmonol. 28, 321–328 (1999).
doi: 10.1002/(SICI)1099-0496(199911)28:5<321::AID-PPUL3>3.0.CO;2-V
Ronchetti, K. et al. The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial. Lancet Respir. Med. 6, 461–471 (2018).
doi: 10.1016/S2213-2600(18)30171-1
Zampoli, M., Pillay, K., Carrara, H., Zar, H. J. & Morrow, B. Microbiological yield from induced sputum compared to oropharyngeal swab in young children with cystic fibrosis. J. Cyst. Fibros. 15, 605–610 (2016).
doi: 10.1016/j.jcf.2016.01.001
Ferreira, A. C. M. et al. Hypertonic saline as a useful tool for sputum induction and pathogen detection in cystic fibrosis. Lung 195, 431–439 (2017).
doi: 10.1007/s00408-017-0008-3
Shanthikumar, S., Neeland, M. N., Saffery, R. & Ranganathan, S. Gene modifiers of cystic fibrosis lung disease: A systematic review. Pediatr. Pulmonol. 54, 1356–1366 (2019).
doi: 10.1002/ppul.24366
Dang, H. et al. Mining GWAS and eQTL data for CF lung disease modifiers by gene expression imputation. PloS one 15, e0239189 (2020).
doi: 10.1371/journal.pone.0239189
Kopp, B. T. et al. The impact of secondhand smoke exposure on children with cystic fibrosis: a review. Int. J. Environ. Res. Public Health 13, https://doi.org/10.3390/ijerph13101003 (2016).
Emerson, J., Rosenfeld, M., McNamara, S., Ramsey, B. & Gibson, R. L. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr. Pulmonol. 34, 91–100 (2002).
doi: 10.1002/ppul.10127
Baker, E., Harris, W. T., Rowe, S. M., Rutland, S. B. & Oates, G. R. Tobacco smoke exposure limits the therapeutic benefit of tezacaftor/ivacaftor in pediatric patients with cystic fibrosis. J. Cyst. Fibros., https://doi.org/10.1016/j.jcf.2020.09.011 (2020).
Stanton, B. A., Coutermarsh, B., Barnaby, R. & Hogan, D. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells. PloS one 10, e0127742 (2015).
doi: 10.1371/journal.pone.0127742
Sakon, C. et al. Opportunity for pharmacogenomic testing in patients with cystic fibrosis. Pediatric pulmonology, https://doi.org/10.1002/ppul.25809 (2021).
Mehta, Z., Kamal, K. M., Miller, R., Covvey, J. R. & Giannetti, V. Adherence to cystic fibrosis transmembrane conductance regulator (CFTR) modulators: analysis of a national specialty pharmacy database. J. Drug Assess. 10, 62–67 (2021).
doi: 10.1080/21556660.2021.1912352
Mitchell, R. M., Jones, A. M., Stocking, K., Foden, P. & Barry, P. J. Longitudinal effects of ivacaftor and medicine possession ratio in people with the Gly551Asp mutation: a 5-year study. Thorax 76, 874–879 (2021).
doi: 10.1136/thoraxjnl-2020-215556
Mikulski, B. S., Bellei, E. A., Biduski, D. & De Marchi, A. C. B. Mobile Health Applications and Medication Adherence of Patients With Hypertension: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. https://doi.org/10.1016/j.amepre.2021.11.003 (2021).
Blakey, J. D. et al. Digital technologies and adherence in respiratory diseases: the road ahead. The European respiratory journal 52, https://doi.org/10.1183/13993003.01147-2018 (2018).
Talwalkar, J. S. et al. Cystic fibrosis transmembrane regulator modulators: implications for the management of depression and anxiety in cystic fibrosis. Psychosomatics 58, 343–354 (2017).
doi: 10.1016/j.psym.2017.04.001
Stanojevic, S. et al. Projecting the impact of delayed access to elexacaftor/tezacaftor/ivacaftor for people with Cystic Fibrosis. J. Cyst. Fibros. 20, 243–249 (2021).
doi: 10.1016/j.jcf.2020.07.017
Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).
doi: 10.1016/j.stem.2013.11.002
Geurts, M. H. et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell 26, 503–510 (2020).
doi: 10.1016/j.stem.2020.01.019
Suzuki, S. et al. Highly efficient gene editing of cystic fibrosis patient-derived airway basal cells results in functional CFTR correction. Mol. Ther.: J. Am. Soc. Gene Ther. 28, 1684–1695 (2020).
doi: 10.1016/j.ymthe.2020.04.021
Rowbotham, N. J. et al. The top 10 research priorities in cystic fibrosis developed by a partnership between people with CF and healthcare providers. Thorax 73, 388–390 (2018).
doi: 10.1136/thoraxjnl-2017-210473
Gifford, A. H., Mayer-Hamblett, N., Pearson, K. & Nichols, D. P. Answering the call to address cystic fibrosis treatment burden in the era of highly effective CFTR modulator therapy. J. Cyst. Fibros. 19, 762–767 (2020).
doi: 10.1016/j.jcf.2019.11.007
Mayer-Hamblett, N. et al. Discontinuation versus continuation of hypertonic saline or dornase alfa in modulator treated people with cystic fibrosis (SIMPLIFY): results from two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials. The Lancet. Respir. Med. https://doi.org/10.1016/S2213-2600(22)00434-9 (2022).
Davies, G. et al. Characterising burden of treatment in cystic fibrosis to identify priority areas for clinical trials. J. Cyst. Fibros. 19, 499–502 (2020).
doi: 10.1016/j.jcf.2019.10.025
Davies, J. C. et al. Speeding up access to new drugs for CF: considerations for clinical trial design and delivery. J. Cyst. Fibros. 18, 677–684 (2019).
doi: 10.1016/j.jcf.2019.06.011
Amaral, M. D. et al. Theranostics by testing CFTR modulators in patient-derived materials: the current status and a proposal for subjects with rare CFTR mutations. J. Cyst. Fibros. 18, 685–692 (2019).
doi: 10.1016/j.jcf.2019.06.010
De Boeck, K. et al. Cystic fibrosis drug trial design in the era of CFTR modulators associated with substantial clinical benefit: stakeholders’ consensus view. J. Cyst. Fibros. 19, 688–695 (2020).
doi: 10.1016/j.jcf.2020.05.012
Cutting, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet 16, 45–56 (2015).
doi: 10.1038/nrg3849
Clancy, J. P. et al. CFTR modulator theratyping: Current status, gaps and future directions. J. Cyst. Fibros. 18, 22–34 (2019).
doi: 10.1016/j.jcf.2018.05.004
Noordhoek, J., Gulmans, V., van der Ent, K. & Beekman, J. M. Intestinal organoids and personalized medicine in cystic fibrosis: a successful patient-oriented research collaboration. Curr. Opin. Pulm. Med. 22, 610–616 (2016).
doi: 10.1097/MCP.0000000000000315
Mayer-Hamblett, N. et al. Building global development strategies for cf therapeutics during a transitional cftr modulator era. J. Cyst. Fibros. 19, 677–687 (2020).
doi: 10.1016/j.jcf.2020.05.011
Dobra, R. et al. Optimising equity of access: how should we allocate slots to the most competitive trials in Cystic Fibrosis (CF). J. Cyst. Fibros. 20, 978–985 (2021).
doi: 10.1016/j.jcf.2021.03.027
Batty, P. & Lillicrap, D. Advances and challenges for hemophilia gene therapy. Hum. Mol. Genet 28, R95–R101 (2019).
doi: 10.1093/hmg/ddz157
Masat, E., Pavani, G. & Mingozzi, F. Humoral immunity to AAV vectors in gene therapy: challenges and potential solutions. Disco. Med 15, 379–389 (2013).
Accurso, F. J. et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N. Engl. J. Med. 363, 1991–2003 (2010).
doi: 10.1056/NEJMoa0909825
Nichols, D. P. et al. PROMISE: working with the CF community to understand emerging clinical and research needs for those treated with highly effective CFTR modulator therapy. J. Cyst. Fibros. 20, 205–212 (2021).
doi: 10.1016/j.jcf.2021.02.003
Moss, R. B. et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis who have an Arg117His-CFTR mutation: a double-blind, randomised controlled trial. Lancet Respir. Med. 3, 524–533 (2015).
doi: 10.1016/S2213-2600(15)00201-5
Nissenbaum, C., Davies, G., Horsley, A. & Davies, J. C. Monitoring early stage lung disease in cystic fibrosis. Curr. Opin. Pulm. Med. 26, 671–678 (2020).
doi: 10.1097/MCP.0000000000000732
Davies, J. C. et al. A phase 3, double-blind, parallel-group study to evaluate the efficacy and safety of tezacaftor in combination with ivacaftor in participants 6 through 11 years of age with cystic fibrosis homozygous for F508del or heterozygous for the F508del-CFTR mutation and a residual function mutation. J. Cyst. Fibros. 20, 68–77 (2021).
doi: 10.1016/j.jcf.2020.07.023
Mondejar-Lopez, P. et al. A multimodal approach to detect and monitor early lung disease in cystic fibrosis. Expert Rev. Respir. Med 15, 761–772 (2021).
doi: 10.1080/17476348.2021.1908131
Marshall, H. et al. Detection of early subclinical lung disease in children with cystic fibrosis by lung ventilation imaging with hyperpolarised gas MRI. Thorax 72, 760–762 (2017).
doi: 10.1136/thoraxjnl-2016-208948
Martini, K. et al. Volumetric dynamic oxygen-enhanced MRI (OE-MRI): comparison with CT Brody score and lung function in cystic fibrosis patients. Eur. Radio. 28, 4037–4047 (2018).
doi: 10.1007/s00330-018-5383-5
VanDevanter, D. R., Mayer-Hamblett, N. & Boyle, M. Feasibility of placebo-controlled trial designs for new CFTR modulator evaluation. J. Cyst. Fibros. 16, 496–498 (2017).
doi: 10.1016/j.jcf.2017.02.012
Trimble, A. T. & Donaldson, S. H. Ivacaftor withdrawal syndrome in cystic fibrosis patients with the G551D mutation. J. Cyst. Fibros. 17, e13–e16 (2018).
doi: 10.1016/j.jcf.2017.09.006
Davies, J. C. et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir. Med. 4, 107–115 (2016).
doi: 10.1016/S2213-2600(15)00545-7
Rosenfeld, M. et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Lancet Respir. Med. 6, 545–553 (2018).
doi: 10.1016/S2213-2600(18)30202-9
Lee, M. et al. Factors influencing clinical trial participation for adult and pediatric patients with cystic fibrosis. J. Cyst. Fibros. 20, 57–60 (2021).
doi: 10.1016/j.jcf.2020.08.019
Dobra, R. et al. Guiding the rational design of patient-centred drug trials in Cystic Fibrosis: a Delphi study. J. Cyst. Fibros. 20, 986–993 (2021).
doi: 10.1016/j.jcf.2021.03.021
van Koningsbruggen-Rietschel, S. et al. Protecting clinical trials in cystic fibrosis during the SARS-CoV-2 pandemic: risks and mitigation measures. Trials 22, 578 (2021).
doi: 10.1186/s13063-021-05457-5
Fudge, N. et al. Optimising Translational Research Opportunities: a Systematic Review and Narrative Synthesis of Basic and Clinician Scientists’ Perspectives of Factors Which Enable or Hinder Translational Research. PloS one 11, e0160475 (2016).
doi: 10.1371/journal.pone.0160475
Bessonova, L. et al. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax 73, 731–740 (2018).
doi: 10.1136/thoraxjnl-2017-210394
Bell, S. C. et al. The future of cystic fibrosis care: a global perspective. Lancet Respir. Med. 8, 65–124 (2020).
doi: 10.1016/S2213-2600(19)30337-6
King, J. A., Nichols, A. L., Bentley, S., Carr, S. B. & Davies, J. C. An Update on CFTR Modulators as New Therapies for Cystic Fibrosis. Paediatr. drugs 24, 321–333 (2022).
doi: 10.1007/s40272-022-00509-y
Christopher Boyd, A. et al. New approaches to genetic therapies for cystic fibrosis. J. Cyst. Fibros. 19, S54–S59 (2020).
doi: 10.1016/j.jcf.2019.12.012
Fajac, I. & Sermet-Gaudelus, I. Therapeutic pipeline for individuals with cystic fibrosis with mutations nonresponsive to current cystic fibrosis transmembrane conductance regulator modulators. Curr. Opin. Pulm. Med. 27, 567–574 (2021).
doi: 10.1097/MCP.0000000000000827
Galietta, L. J. V. TMEM16A (ANO1) as a therapeutic target in cystic fibrosis. Curr. Opin. Pharmacol. 64, 102206 (2022).
doi: 10.1016/j.coph.2022.102206
Figueira, M. F., Ribeiro, C. M. P. & Button, B. Mucus-targeting therapies of defective mucus clearance for cystic fibrosis: a short review. Curr. Opin. Pharmacol. 65, 102248 (2022).
doi: 10.1016/j.coph.2022.102248
Manos, J. Current and emerging therapies to combat cystic fibrosis lung infections. Microorganisms 9, https://doi.org/10.3390/microorganisms9091874 (2021).
Antos, N. J. & Savant, A. P. Cystic fibrosis year in review 2020: section 2 pulmonary disease, infections, and inflammation. Pediatr. Pulmonol. 57, 347–360 (2022).
doi: 10.1002/ppul.25459