Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance.


Journal

Nature reviews. Gastroenterology & hepatology
ISSN: 1759-5053
Titre abrégé: Nat Rev Gastroenterol Hepatol
Pays: England
ID NLM: 101500079

Informations de publication

Date de publication:
07 2023
Historique:
accepted: 20 12 2022
medline: 29 6 2023
pubmed: 10 2 2023
entrez: 9 2 2023
Statut: ppublish

Résumé

Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.

Identifiants

pubmed: 36755084
doi: 10.1038/s41575-022-00739-y
pii: 10.1038/s41575-022-00739-y
doi:

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

462-480

Investigateurs

Lewis Roberts (L)
Alexander Scheiter (A)
Florin M Selaru (FM)
Katja Evert (K)
Kirsten Utpatel (K)
Laura Broutier (L)
Massimiliano Cadamuro (M)
Meritxell Huch (M)
Robert Goldin (R)
Sergio A Gradilone (SA)
Yoshimasa Saito (Y)

Informations de copyright

© 2023. Springer Nature Limited.

Références

Marin, J. J. G., Herraez, E., Lozano, E., Macias, R. I. R. & Briz, O. Models for understanding resistance to chemotherapy in liver cancer. Cancers 11, 1677 (2019).
pubmed: 31671735 pmcid: 6896032 doi: 10.3390/cancers11111677
Banales, J. M. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557–588 (2020).
pubmed: 32606456 pmcid: 7447603 doi: 10.1038/s41575-020-0310-z
Zach, S., Birgin, E. & Rückert, F. Primary cholangiocellular carcinoma cell lines. J. Stem Cell Res. Transplant. 2, 1013 (2015).
Martinez-Becerra, P. et al. No correlation between the expression of FXR and genes involved in multidrug resistance phenotype of primary liver tumors. Mol. Pharm. 9, 1693–1704 (2012).
pubmed: 22524153 doi: 10.1021/mp300028a
Raggi, C. et al. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. J. Hepatol. 66, 102–115 (2017).
pubmed: 27593106 doi: 10.1016/j.jhep.2016.08.012
Marsee, A. et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28, 816–832 (2021).
pubmed: 33961769 doi: 10.1016/j.stem.2021.04.005
Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).
pubmed: 29131160 pmcid: 5722201 doi: 10.1038/nm.4438
Weiswald, L. B., Bellet, D. & Dangles-Marie, V. Spherical cancer models in tumor biology. Neoplasia 17, 1–15 (2015).
pubmed: 25622895 pmcid: 4309685 doi: 10.1016/j.neo.2014.12.004
Nuciforo, S. et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 24, 1363–1376 (2018).
pubmed: 30067989 pmcid: 6088153 doi: 10.1016/j.celrep.2018.07.001
Loeuillard, E., Fischbach, S. R., Gores, G. J. & Rizvi, S. Animal models of cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 982–992 (2019).
pubmed: 29627364 doi: 10.1016/j.bbadis.2018.03.026
Leiting, J. L. et al. Biliary tract cancer patient-derived xenografts: surgeon impact on individualized medicine. JHEP Rep. 2, 100068 (2020).
pubmed: 32181445 pmcid: 7066236 doi: 10.1016/j.jhepr.2020.100068
Saborowski, A. et al. Murine liver organoids as a genetically flexible system to study liver cancer in vivo and in vitro. Hepatol. Commun. 3, 423–436 (2019).
pubmed: 30859153 pmcid: 6396372 doi: 10.1002/hep4.1312
Wang, J. et al. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. J. Hepatol. 71, 742–752 (2019).
pubmed: 31195063 pmcid: 6773530 doi: 10.1016/j.jhep.2019.05.027
Primrose, J. N. et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 20, 663–673 (2019).
pubmed: 30922733 doi: 10.1016/S1470-2045(18)30915-X
Jusakul, A. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7, 1116–1135 (2017).
pubmed: 28667006 pmcid: 5628134 doi: 10.1158/2159-8290.CD-17-0368
Abou-Alfa, G. K. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 21, 796–807 (2020).
pubmed: 32416072 pmcid: 7523268 doi: 10.1016/S1470-2045(20)30157-1
Abou-Alfa, G. K. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21, 671–684 (2020).
pubmed: 32203698 pmcid: 8461541 doi: 10.1016/S1470-2045(20)30109-1
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: a 2022 update. Pharmacol. Res. 175, 106037 (2022).
pubmed: 34921994 doi: 10.1016/j.phrs.2021.106037
Izquierdo-Sanchez, L. et al. Cholangiocarcinoma landscape in Europe: diagnostic, prognostic and therapeutic insights from the ENSCCA registry. J. Hepatol. 76, 1109–1121 (2022).
pubmed: 35167909 doi: 10.1016/j.jhep.2021.12.010
WHO Classification of Tumours Editorial Board. Digestive System Tumours: WHO Classification of Tumours 5th edn Vol. 1 (WHO, 2019).
Goyal, L. et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 7, 252–263 (2017).
pubmed: 28034880 doi: 10.1158/2159-8290.CD-16-1000
Lowery, M. A. et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: a phase 1 study. Lancet Gastroenterol. Hepatol. 4, 711–720 (2019).
pubmed: 31300360 pmcid: 7934945 doi: 10.1016/S2468-1253(19)30189-X
Saborowski, A., Vogel, A. & Segatto, O. Combination therapies for targeting FGFR2 fusions in cholangiocarcinoma. Trends Cancer 8, 83–86 (2022).
pubmed: 34840108 doi: 10.1016/j.trecan.2021.11.001
Wu, M. J., Shi, L., Merritt, J., Zhu, A. X. & Bardeesy, N. Biology of IDH mutant cholangiocarcinoma. Hepatology 75, 1322–1337 (2022).
pubmed: 35226770 doi: 10.1002/hep.32424
Brierley, J. D., Gospodarowicz, M. K. & Wittekind, C. TNM Classification of Malignant Tumours 8th edn (Union for International Cancer Control, 2017).
Amin, M. B. et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 67, 93–99 (2017).
pubmed: 28094848 doi: 10.3322/caac.21388
Guglielmi, A. et al. Intrahepatic cholangiocarcinoma: prognostic factors after surgical resection. World J. Surg. 33, 1247–1254 (2009).
pubmed: 19294467 doi: 10.1007/s00268-009-9970-0
Kendall, T. et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 39 (Suppl. 1), 7–18 (2019).
pubmed: 30882996 doi: 10.1111/liv.14093
Zen, Y., Quaglia, A., Heaton, N., Rela, M. & Portmann, B. Two distinct pathways of carcinogenesis in primary sclerosing cholangitis. Histopathology 59, 1100–1110 (2011).
pubmed: 22175890 doi: 10.1111/j.1365-2559.2011.04048.x
Radwan, N. A. & Ahmed, N. S. The diagnostic value of arginase-1 immunostaining in differentiating hepatocellular carcinoma from metastatic carcinoma and cholangiocarcinoma as compared to HepPar-1. Diagn. Pathol. 7, 149 (2012).
pubmed: 23111165 pmcid: 3500209 doi: 10.1186/1746-1596-7-149
Shirakawa, H. et al. Glypican-3 is a useful diagnostic marker for a component of hepatocellular carcinoma in human liver cancer. Int. J. Oncol. 34, 649–656 (2009).
pubmed: 19212669
Lei, J. Y., Bourne, P. A., diSant’Agnese, P. A. & Huang, J. Cytoplasmic staining of TTF-1 in the differential diagnosis of hepatocellular carcinoma vs cholangiocarcinoma and metastatic carcinoma of the liver. Am. J. Clin. Pathol. 125, 519–525 (2006).
pubmed: 16627262 doi: 10.1309/59TNEFALUL5WJ94M
Zong, Y., Xiong, Y., Dresser, K., Yang, M. & Bledsoe, J. R. Polyclonal PAX8 expression in carcinomas of the biliary tract – frequent non-specific staining represents a potential diagnostic pitfall. Ann. Diagn. Pathol. 53, 151762 (2021).
pubmed: 34102541 doi: 10.1016/j.anndiagpath.2021.151762
Clark, B. Z., Beriwal, S., Dabbs, D. J. & Bhargava, R. Semiquantitative GATA-3 immunoreactivity in breast, bladder, gynecologic tract, and other cytokeratin 7-positive carcinomas. Am. J. Clin. Pathol. 142, 64–71 (2014).
pubmed: 24926087 doi: 10.1309/AJCP8H2VBDSCIOBF
Zen, Y. et al. Biliary intraepithelial neoplasia: an international interobserver agreement study and proposal for diagnostic criteria. Mod. Pathol. 20, 701–709 (2007).
pubmed: 17431410 doi: 10.1038/modpathol.3800788
Fujikura, K. et al. Comparative clinicopathological study of biliary intraductal papillary neoplasms and papillary cholangiocarcinomas. Histopathology 69, 950–961 (2016).
pubmed: 27410028 doi: 10.1111/his.13037
Komori, T. et al. CT imaging comparison between intraductal papillary neoplasms of the bile duct and papillary cholangiocarcinomas. Eur. Radiol. 29, 3132–3140 (2019).
pubmed: 30519930 doi: 10.1007/s00330-018-5841-0
Schlitter, A. M. et al. Intraductal papillary neoplasms of the bile duct: stepwise progression to carcinoma involves common molecular pathways. Mod. Pathol. 27, 73–86 (2014).
pubmed: 23828315 doi: 10.1038/modpathol.2013.112
Goeppert, B. et al. Integrative analysis defines distinct prognostic subgroups of intrahepatic cholangiocarcinoma. Hepatology 69, 2091–2106 (2019).
pubmed: 30615206 doi: 10.1002/hep.30493
Quigley, B. et al. Hepatobiliary mucinous cystic neoplasms with ovarian type stroma (so-called “hepatobiliary cystadenoma/cystadenocarcinoma”): clinicopathologic analysis of 36 cases illustrates rarity of carcinomatous change. Am. J. Surg. Pathol. 42, 95–102 (2018).
pubmed: 29016404 doi: 10.1097/PAS.0000000000000963
Zen, Y. et al. Mucinous cystic neoplasms of the liver: a clinicopathological study and comparison with intraductal papillary neoplasms of the bile duct. Mod. Pathol. 24, 1079–1089 (2011).
pubmed: 21516077 doi: 10.1038/modpathol.2011.71
Chan-On, W. et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat. Genet. 45, 1474–1478 (2013).
pubmed: 24185513 doi: 10.1038/ng.2806
Farshidfar, F. et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 19, 2878–2880 (2017).
pubmed: 28658632 pmcid: 6141445 doi: 10.1016/j.celrep.2017.06.008
Fujimoto, A. et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat. Commun. 6, 6120 (2015).
pubmed: 25636086 doi: 10.1038/ncomms7120
Gao, Q. et al. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology 146, 1397–1407 (2014).
pubmed: 24503127 doi: 10.1053/j.gastro.2014.01.062
Nepal, C. et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology 68, 949–963 (2018).
pubmed: 29278425 doi: 10.1002/hep.29764
Nakamura, H. et al. Genomic spectra of biliary tract cancer. Nat. Genet. 47, 1003–1010 (2015).
pubmed: 26258846 doi: 10.1038/ng.3375
Ong, C. K. et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat. Genet. 44, 690–693 (2012).
pubmed: 22561520 doi: 10.1038/ng.2273
Zou, S. et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat. Commun. 5, 5696 (2014).
pubmed: 25526346 doi: 10.1038/ncomms6696
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
pubmed: 23770567 pmcid: 3919509 doi: 10.1038/nature12213
Andersen, J. B. et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 142, 1021–1031.e15 (2012).
pubmed: 22178589 doi: 10.1053/j.gastro.2011.12.005
Sia, D. et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 144, 829–840 (2013).
pubmed: 23295441 doi: 10.1053/j.gastro.2013.01.001
Montal, R. et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J. Hepatol. 73, 315–327 (2020).
pubmed: 32173382 pmcid: 8418904 doi: 10.1016/j.jhep.2020.03.008
Marquardt, J. U., Andersen, J. B. & Thorgeirsson, S. S. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat. Rev. Cancer 15, 653–667 (2015).
pubmed: 26493646 doi: 10.1038/nrc4017
Moeini, A., Haber, P. K. & Sia, D. Cell of origin in biliary tract cancers and clinical implications. JHEP Rep. 3, 100226 (2021).
pubmed: 33665585 pmcid: 7902553 doi: 10.1016/j.jhepr.2021.100226
Holczbauer, A. et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145, 221–231 (2013).
pubmed: 23523670 doi: 10.1053/j.gastro.2013.03.013
Guest, R. V. et al. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res. 74, 1005–1010 (2014).
pubmed: 24310400 doi: 10.1158/0008-5472.CAN-13-1911
Lee, J. S. et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat. Genet. 36, 1306–1311 (2004).
pubmed: 15565109 doi: 10.1038/ng1481
Lee, J. S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410–416 (2006).
pubmed: 16532004 doi: 10.1038/nm1377
Massa, A. et al. Evolution of the experimental models of cholangiocarcinoma. Cancers 12, 2308 (2020).
pubmed: 32824407 pmcid: 7463907 doi: 10.3390/cancers12082308
Fava, G. et al. γ-Aminobutyric acid inhibits cholangiocarcinoma growth by cyclic AMP-dependent regulation of the protein kinase A/extracellular signal-regulated kinase 1/2 pathway. Cancer Res. 65, 11437–11446 (2005).
pubmed: 16357152 doi: 10.1158/0008-5472.CAN-05-1470
Mohr, R. et al. In vivo models for cholangiocarcinoma–what can we learn for human disease? Int. J. Mol. Sci. 21, 4993 (2020).
pubmed: 32679791 pmcid: 7404171 doi: 10.3390/ijms21144993
Cadamuro, M. et al. Animal models of cholangiocarcinoma: what they teach us about the human disease. Clin. Res. Hepatol. Gastroenterol. 42, 403–415 (2018).
pubmed: 29753731 doi: 10.1016/j.clinre.2018.04.008
Hu, M. H. et al. Targeting SHP-1-STAT3 signaling: a promising therapeutic approach for the treatment of cholangiocarcinoma. Oncotarget 8, 65077–65089 (2017).
pubmed: 29029413 pmcid: 5630313 doi: 10.18632/oncotarget.17779
Samukawa, E. et al. Angiotensin receptor blocker telmisartan inhibits cell proliferation and tumor growth of cholangiocarcinoma through cell cycle arrest. Int. J. Oncol. 51, 1674–1684 (2017).
pubmed: 29075786 pmcid: 5673010 doi: 10.3892/ijo.2017.4177
Pawar, P. et al. Molecular mechanisms of tamoxifen therapy for cholangiocarcinoma: role of calmodulin. Clin. Cancer Res. 15, 1288–1296 (2009).
pubmed: 19228732 pmcid: 2905314 doi: 10.1158/1078-0432.CCR-08-1150
Colyn, L. et al. Dual targeting of G9a and DNA methyltransferase-1 for the treatment of experimental cholangiocarcinoma. Hepatology 73, 2380–2396 (2021).
pubmed: 33222246 doi: 10.1002/hep.31642
Hou, Y. J. et al. Inhibition of active autophagy induces apoptosis and increases chemosensitivity in cholangiocarcinoma. Lab. Invest. 91, 1146–1157 (2011).
pubmed: 21647092 doi: 10.1038/labinvest.2011.97
Merino-Azpitarte, M. et al. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. J. Hepatol. 67, 72–83 (2017).
pubmed: 28237397 pmcid: 5502751 doi: 10.1016/j.jhep.2017.02.017
Meng, F., Yamagiwa, Y., Ueno, Y. & Patel, T. Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J. Hepatol. 44, 1055–1065 (2006).
pubmed: 16469407 doi: 10.1016/j.jhep.2005.10.030
Lobe, C. et al. Zinc finger E-box binding homeobox 1 promotes cholangiocarcinoma progression through tumor dedifferentiation and tumor-stroma paracrine signaling. Hepatology 74, 3194–3212 (2021).
pubmed: 34297412 doi: 10.1002/hep.32069
Gentilini, A. et al. Extracellular signal-regulated kinase 5 regulates the malignant phenotype of cholangiocarcinoma cells. Hepatology 74, 2007–2020 (2021).
pubmed: 33959996 doi: 10.1002/hep.31888
Vallejo, A. et al. FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted. J. Hepatol. 75, 363–376 (2021).
pubmed: 33887357 doi: 10.1016/j.jhep.2021.03.028
Olaru, A. V. et al. MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology 54, 2089–2098 (2011).
pubmed: 21809359 doi: 10.1002/hep.24591
Zhang, J., Han, C. & Wu, T. MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology 143, 246–256.e8 (2012).
pubmed: 22484120 doi: 10.1053/j.gastro.2012.03.045
Zhu, H., Han, C., Lu, D. & Wu, T. miR-17-92 cluster promotes cholangiocarcinoma growth: evidence for PTEN as downstream target and IL-6/Stat3 as upstream activator. Am. J. Pathol. 184, 2828–2839 (2014).
pubmed: 25239565 pmcid: 4188863 doi: 10.1016/j.ajpath.2014.06.024
Zhu, H. et al. Neuropilin-1 regulated by miR-320 contributes to the growth and metastasis of cholangiocarcinoma cells. Liver Int. 38, 125–135 (2018).
pubmed: 28618167 doi: 10.1111/liv.13495
Han, S. et al. Suppression of miR-16 promotes tumor growth and metastasis through reversely regulating YAP1 in human cholangiocarcinoma. Oncotarget 8, 56635–56650 (2017).
pubmed: 28915618 pmcid: 5593589 doi: 10.18632/oncotarget.17832
Razumilava, N. et al. Non-canonical Hedgehog signaling contributes to chemotaxis in cholangiocarcinoma. J. Hepatol. 60, 599–605 (2014).
pubmed: 24239776 doi: 10.1016/j.jhep.2013.11.005
McVeigh, L. E. et al. Development of orthotopic tumour models using ultrasound-guided intrahepatic injection. Sci. Rep. 9, 9904 (2019).
pubmed: 31289364 pmcid: 6616610 doi: 10.1038/s41598-019-46410-6
Erice, O. et al. Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1335–1344 (2018).
pubmed: 28916388 doi: 10.1016/j.bbadis.2017.08.016
Cardinale, V. et al. Profiles of cancer stem cell subpopulations in cholangiocarcinomas. Am. J. Pathol. 185, 1724–1739 (2015).
pubmed: 25892683 pmcid: 4450332 doi: 10.1016/j.ajpath.2015.02.010
Wu, Z. et al. Significance of S100P as a biomarker in diagnosis, prognosis and therapy of opisthorchiasis-associated cholangiocarcinoma. Int. J. Cancer 138, 396–408 (2016).
pubmed: 26312563 doi: 10.1002/ijc.29721
Cadamuro, M. et al. Low-dose paclitaxel reduces S100A4 nuclear import to inhibit invasion and hematogenous metastasis of cholangiocarcinoma. Cancer Res. 76, 4775–4784 (2016).
pubmed: 27328733 pmcid: 4987167 doi: 10.1158/0008-5472.CAN-16-0188
Peraldo Neia, C. et al. Gene and microRNA modulation upon trabectedin treatment in a human intrahepatic cholangiocarcinoma paired patient derived xenograft and cell line. Oncotarget 7, 86766–86780 (2016).
pubmed: 27902465 pmcid: 5349952 doi: 10.18632/oncotarget.13575
Peraldo-Neia, C. et al. Anti-cancer effect and gene modulation of ET-743 in human biliary tract carcinoma preclinical models. BMC Cancer 14, 918 (2014).
pubmed: 25479910 pmcid: 4289395 doi: 10.1186/1471-2407-14-918
Wang, Y. et al. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein. Cancer Lett. 380, 163–173 (2016).
pubmed: 27216979 pmcid: 5119950 doi: 10.1016/j.canlet.2016.05.017
Saha, S. K. et al. Isocitrate dehydrogenase mutations confer dasatinib hypersensitivity and SRC dependence in intrahepatic cholangiocarcinoma. Cancer Discov. 6, 727–739 (2016).
pubmed: 27231123 pmcid: 5458737 doi: 10.1158/2159-8290.CD-15-1442
Kabashima, A. et al. Fibroblast growth factor receptor inhibition induces loss of matrix MCL1 and necrosis in cholangiocarcinoma. J. Hepatol. 68, 1228–1238 (2018).
pubmed: 29408314 pmcid: 5960421 doi: 10.1016/j.jhep.2018.01.026
Lidsky, M. E. et al. Leveraging patient derived models of FGFR2 fusion positive intrahepatic cholangiocarcinoma to identify synergistic therapies. NPJ Precis. Oncol. 6, 75 (2022).
pubmed: 36274097 pmcid: 9588766 doi: 10.1038/s41698-022-00320-5
Wu, Q. et al. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 12, 1378–1395 (2022).
pubmed: 35420673 pmcid: 9064956 doi: 10.1158/2159-8290.CD-21-1168
Sirica, A. E. et al. A novel “patient-like” model of cholangiocarcinoma progression based on bile duct inoculation of tumorigenic rat cholangiocyte cell lines. Hepatology 47, 1178–1190 (2008).
pubmed: 18081149 doi: 10.1002/hep.22088
Fingas, C. D. et al. A smac mimetic reduces TNF related apoptosis inducing ligand (TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells. Hepatology 52, 550–561 (2010).
pubmed: 20683954 doi: 10.1002/hep.23729
Blechacz, B. R. et al. Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology 50, 1861–1870 (2009).
pubmed: 19821497 doi: 10.1002/hep.23214
Smoot, R. L. et al. A Bax-mediated mechanism for obatoclax-induced apoptosis of cholangiocarcinoma cells. Cancer Res. 70, 1960–1969 (2010).
pubmed: 20160031 pmcid: 2831099 doi: 10.1158/0008-5472.CAN-09-3535
Fingas, C. D. et al. Targeting PDGFR-β in cholangiocarcinoma. Liver Int. 32, 400–409 (2012).
pubmed: 22133064
Mertens, J. C. et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res. 73, 897–907 (2013).
pubmed: 23221385 doi: 10.1158/0008-5472.CAN-12-2130
Yamada, D. et al. IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism. Hepatology 61, 1627–1642 (2015).
pubmed: 25580681 doi: 10.1002/hep.27687
Rizvi, S. et al. YAP-associated chromosomal instability and cholangiocarcinoma in mice. Oncotarget 9, 5892–5905 (2018).
pubmed: 29464042 doi: 10.18632/oncotarget.23638
Saborowski, A. et al. Mouse model of intrahepatic cholangiocarcinoma validates FIG-ROS as a potent fusion oncogene and therapeutic target. Proc. Natl Acad. Sci. USA 110, 19513–19518 (2013).
pubmed: 24154728 pmcid: 3845141 doi: 10.1073/pnas.1311707110
Loeuillard, E. et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J. Clin. Invest. 130, 5380–5396 (2020).
pubmed: 32663198 pmcid: 7524481 doi: 10.1172/JCI137110
Fabris, L., Sato, K., Alpini, G. & Strazzabosco, M. The tumor microenvironment in cholangiocarcinoma progression. Hepatology 73 (Suppl. 1), 75–85 (2021).
pubmed: 32500550 doi: 10.1002/hep.31410
Fitzhugh, O. G. & Nelson, A. A. Liver tumors in rats fed thiourea or thioacetamide. Science 108, 626–628 (1948).
pubmed: 17783352 doi: 10.1126/science.108.2814.626
Al-Bader, A. et al. Cholangiocarcinoma and liver cirrhosis in relation to changes due to thioacetamide. Mol. Cell Biochem. 208, 1–10 (2000).
pubmed: 10939622 doi: 10.1023/A:1007082515548
Kamp, E. J. et al. Genetic alterations during the neoplastic cascade towards cholangiocarcinoma in primary sclerosing cholangitis. J. Pathol. 258, 227–235 (2022).
pubmed: 35897137 pmcid: 9825993 doi: 10.1002/path.5994
Yeh, C. N., Maitra, A., Lee, K. F., Jan, Y. Y. & Chen, M. F. Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating the multi-stage progression of human cholangiocarcinoma. Carcinogenesis 25, 631–636 (2004).
pubmed: 14656942 doi: 10.1093/carcin/bgh037
Lozano, E. et al. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Mol. Cancer Res. 12, 91–100 (2014).
pubmed: 24255171 doi: 10.1158/1541-7786.MCR-13-0503
Verna, L., Whysner, J. & Williams, G. M. N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol. Ther. 71, 57–81 (1996).
pubmed: 8910949 doi: 10.1016/0163-7258(96)00062-9
Yang, H. et al. A mouse model of cholestasis-associated cholangiocarcinoma and transcription factors involved in progression. Gastroenterology 141, 378–388.e4 (2011).
pubmed: 21440549 doi: 10.1053/j.gastro.2011.03.044
Thamavit, W. et al. Promotion of cholangiocarcinogenesis in the hamster liver by bile duct ligation after dimethylnitrosamine initiation. Carcinogenesis 14, 2415–2417 (1993).
pubmed: 8242874 doi: 10.1093/carcin/14.11.2415
Thamavit, W., Pairojkul, C., Tiwawech, D., Shirai, T. & Ito, N. Strong promoting effect of Opisthorchis viverrini infection on dimethylnitrosamine-initiated hamster liver. Cancer Lett. 78, 121–125 (1994).
pubmed: 8180954 doi: 10.1016/0304-3835(94)90040-X
Maronpot, R. R., Giles, H. D., Dykes, D. J. & Irwin, R. D. Furan-induced hepatic cholangiocarcinomas in Fischer 344 rats. Toxicol. Pathol. 19, 561–570 (1991).
pubmed: 1668599 doi: 10.1177/019262339101900401
Erice, O. et al. Genetic mouse models as in vivo tools for cholangiocarcinoma research. Cancers 11, 1868 (2019).
pubmed: 31769429 pmcid: 6966555 doi: 10.3390/cancers11121868
Xu, X. et al. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J. Clin. Invest. 116, 1843–1852 (2006).
pubmed: 16767220 pmcid: 1474816 doi: 10.1172/JCI27282
O’Dell, M. R. et al. Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma. Cancer Res. 72, 1557–1567 (2012).
pubmed: 22266220 pmcid: 3306549 doi: 10.1158/0008-5472.CAN-11-3596
Hill, M. A. et al. Kras and Tp53 mutations cause cholangiocyte- and hepatocyte-derived cholangiocarcinoma. Cancer Res. 78, 4445–4451 (2018).
pubmed: 29871934 pmcid: 6097629 doi: 10.1158/0008-5472.CAN-17-1123
Ikenoue, T. et al. A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion. Sci. Rep. 6, 23899 (2016).
pubmed: 27032374 pmcid: 4817147 doi: 10.1038/srep23899
Lin, Y. K. et al. Combination of Kras activation and PTEN deletion contributes to murine hepatopancreatic ductal malignancy. Cancer Lett. 421, 161–169 (2018).
pubmed: 29452147 doi: 10.1016/j.canlet.2018.02.017
Saha, S. K. et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 513, 110–114 (2014).
pubmed: 25043045 pmcid: 4499230 doi: 10.1038/nature13441
Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966 (2010).
pubmed: 20559394 pmcid: 3766976 doi: 10.1038/nature09132
Wu, M. J. et al. Mutant IDH inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma. Cancer Discov. 12, 812–835 (2022).
pubmed: 34848557 pmcid: 8904298 doi: 10.1158/2159-8290.CD-21-1077
Zender, S. et al. A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell 23, 784–795 (2013).
pubmed: 23727022 doi: 10.1016/j.ccr.2013.04.019
Yuan, D. et al. Kupffer cell-derived TNF triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS. Cancer Cell 31, 771–789.e6 (2017).
pubmed: 28609656 pmcid: 7909318 doi: 10.1016/j.ccell.2017.05.006
Nakagawa, H. et al. Biliary epithelial injury-induced regenerative response by IL-33 promotes cholangiocarcinogenesis from peribiliary glands. Proc. Natl Acad. Sci. USA 114, E3806–E3815 (2017).
pubmed: 28439013 pmcid: 5441746 doi: 10.1073/pnas.1619416114
Guest, R. V. et al. Notch3 drives development and progression of cholangiocarcinoma. Proc. Natl Acad. Sci. USA 113, 12250–12255 (2016).
pubmed: 27791012 pmcid: 5086988 doi: 10.1073/pnas.1600067113
Farazi, P. A. et al. Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice. Cancer Res. 66, 6622–6627 (2006).
pubmed: 16818635 doi: 10.1158/0008-5472.CAN-05-4609
Younger, N. T. et al. In vivo modeling of patient genetic heterogeneity identifies new ways to target cholangiocarcinoma. Cancer Res. 82, 1548–1559 (2022).
pubmed: 35074757 pmcid: 9359731 doi: 10.1158/0008-5472.CAN-21-2556
Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).
pubmed: 22797301 pmcid: 3408746 doi: 10.1172/JCI63212
Yamaguchi, N., Morioka, H., Ohkura, H., Hirohashi, S. & Kawai, K. Establishment and characterization of the human cholangiocarcinoma cell line HChol-Y1 in a serum-free, chemically defined medium. J. Natl Cancer Inst. 75, 29–35 (1985).
pubmed: 2989602
Valle, J. W., Lamarca, A., Goyal, L., Barriuso, J. & Zhu, A. X. New horizons for precision medicine in biliary tract cancers. Cancer Discov. 7, 943–962 (2017).
pubmed: 28818953 pmcid: 5586506 doi: 10.1158/2159-8290.CD-17-0245
Lau, D. K. et al. Genomic profiling of biliary tract cancer cell lines reveals molecular subtypes and actionable drug targets. iScience 21, 624–637 (2019).
pubmed: 31731200 pmcid: 6889747 doi: 10.1016/j.isci.2019.10.044
Scherer, D. et al. RNA sequencing of hepatobiliary cancer cell lines: data and applications to mutational and transcriptomic profiling. Cancers 12, 2510 (2020).
pubmed: 32899426 pmcid: 7565451 doi: 10.3390/cancers12092510
Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503–508 (2019).
pubmed: 31068700 pmcid: 6697103 doi: 10.1038/s41586-019-1186-3
Nagtegaal, I. D. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 76, 182–188 (2020).
pubmed: 31433515 doi: 10.1111/his.13975
Knuth, A. et al. Biliary adenocarcinoma. Characterisation of three new human tumor cell lines. J. Hepatol. 1, 579–596 (1985).
pubmed: 4056357 doi: 10.1016/S0168-8278(85)80002-7
Fausther, M. et al. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE 10, e0121161 (2015).
pubmed: 25822334 pmcid: 4378927 doi: 10.1371/journal.pone.0121161
Kaur, G. & Dufour, J. M. Cell lines: valuable tools or useless artifacts. Spermatogenesis 2, 1–5 (2012).
pubmed: 22553484 pmcid: 3341241 doi: 10.4161/spmg.19885
Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, 2126 (2013).
pubmed: 23839242 doi: 10.1038/ncomms3126
Ertel, A., Verghese, A., Byers, S. W., Ochs, M. & Tozeren, A. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol. Cancer 5, 55 (2006).
pubmed: 17081305 pmcid: 1635729 doi: 10.1186/1476-4598-5-55
Gillet, J. P. et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl Acad. Sci. USA 108, 18708–18713 (2011).
pubmed: 22068913 pmcid: 3219108 doi: 10.1073/pnas.1111840108
Chow, M. & Rubin, H. Clonal selection versus genetic instability as the driving force in neoplastic transformation. Cancer Res. 60, 6510–6518 (2000).
pubmed: 11103821
Massani, M. et al. Isolation and characterization of biliary epithelial and stromal cells from resected human cholangiocarcinoma: a novel in vitro model to study tumor-stroma interactions. Oncol. Rep. 30, 1143–1148 (2013).
pubmed: 23807641 doi: 10.3892/or.2013.2568
Fraveto, A. et al. Sensitivity of human intrahepatic cholangiocarcinoma subtypes to chemotherapeutics and molecular targeted agents: a study on primary cell cultures. PLoS ONE 10, e0142124 (2015).
pubmed: 26571380 pmcid: 4646673 doi: 10.1371/journal.pone.0142124
Carnevale, G. et al. Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human cholangiocarcinoma cells. Sci. Rep. 7, 14419 (2017).
pubmed: 29089545 pmcid: 5663931 doi: 10.1038/s41598-017-14838-3
Lustri, A. M. et al. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: a study on human primary cell cultures. PLoS ONE 12, e0183932 (2017).
pubmed: 28873435 pmcid: 5584931 doi: 10.1371/journal.pone.0183932
Ku, J. L. et al. Establishment and characterisation of six human biliary tract cancer cell lines. Br. J. Cancer 87, 187–193 (2002).
pubmed: 12107841 pmcid: 2376107 doi: 10.1038/sj.bjc.6600440
Pastor, D. M. et al. Primary cell lines: false representation or model system? A comparison of four human colorectal tumors and their coordinately established cell lines. Int. J. Clin. Exp. Med. 3, 69–83 (2010).
pubmed: 20369042 pmcid: 2848308
Vaquero, J. et al. The IGF2/IR/IGF1R pathway in tumor cells and myofibroblasts mediates resistance to EGFR inhibition in cholangiocarcinoma. Clin. Cancer Res. 24, 4282–4296 (2018).
pubmed: 29716918 doi: 10.1158/1078-0432.CCR-17-3725
Zhou, Z. et al. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J. Immunother. Cancer 9, e001946 (2021).
pubmed: 33692217 pmcid: 7949476 doi: 10.1136/jitc-2020-001946
Okabe, H. et al. Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 16, 2555–2564 (2009).
pubmed: 19548033 doi: 10.1245/s10434-009-0568-4
Nicolas-Boluda, A. et al. Photothermal depletion of cancer-associated fibroblasts normalizes tumor stiffness in desmoplastic cholangiocarcinoma. ACS Nano 14, 5738–5753 (2020).
pubmed: 32338871 doi: 10.1021/acsnano.0c00417
Cadamuro, M. et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma. J. Hepatol. 70, 700–709 (2019).
pubmed: 30553841 doi: 10.1016/j.jhep.2018.12.004
Li, L. et al. Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma and improve survival in a rat model. Hepatology 65, 501–514 (2017).
pubmed: 27474881 doi: 10.1002/hep.28735
Fennema, E., Rivron, N., Rouwkema, J., van Blitterswijk, C. & de Boer, J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 31, 108–115 (2013).
pubmed: 23336996 doi: 10.1016/j.tibtech.2012.12.003
Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).
pubmed: 19329995 doi: 10.1038/nature07935
Huch, M., Boj, S. F. & Clevers, H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen. Med. 8, 385–387 (2013).
pubmed: 23826690 doi: 10.2217/rme.13.39
Sato, K. et al. Organoids and spheroids as models for studying cholestatic liver injury and cholangiocarcinoma. Hepatology 74, 491–502 (2021).
pubmed: 33222247 doi: 10.1002/hep.31653
Girard, Y. K. et al. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS ONE 8, e75345 (2013).
pubmed: 24146752 pmcid: 3797770 doi: 10.1371/journal.pone.0075345
Wu, F. et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J. Hepatol. 70, 1145–1158 (2019).
pubmed: 30630011 doi: 10.1016/j.jhep.2018.12.028
Soroka, C. J., Assis, D. N. & Boyer, J. L. Patient-derived organoids from human bile: an in vitro method to study cholangiopathies. Methods Mol. Biol. 1981, 363–372 (2019).
pubmed: 31016667 doi: 10.1007/978-1-4939-9420-5_24
Roos, F. J. M. et al. Human bile contains cholangiocyte organoid-initiating cells which expand as functional cholangiocytes in non-canonical Wnt stimulating conditions. Front. Cell Dev. Biol. 8, 630492 (2020).
pubmed: 33634107 doi: 10.3389/fcell.2020.630492
Lampis, A. et al. MIR21 drives resistance to heat shock protein 90 inhibition in cholangiocarcinoma. Gastroenterology 154, 1066–1079.e5 (2018).
pubmed: 29113809 doi: 10.1053/j.gastro.2017.10.043
Li, L. et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 4, e121490 (2019).
pubmed: 30674722 pmcid: 6413833 doi: 10.1172/jci.insight.121490
Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 1724–1743 (2016).
pubmed: 27560176 doi: 10.1038/nprot.2016.097
Artegiani, B. et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell 24, 927–943.e6 (2019).
pubmed: 31130514 doi: 10.1016/j.stem.2019.04.017
Sun, L. et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat. Cell Biol. 21, 1015–1026 (2019).
pubmed: 31332348 doi: 10.1038/s41556-019-0359-5
Cristinziano, G. et al. FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma. J. Hepatol. 75, 351–362 (2021).
pubmed: 33741397 doi: 10.1016/j.jhep.2021.02.032
Leyva-Illades, D., McMillin, M., Quinn, M. & Demorrow, S. Cholangiocarcinoma pathogenesis: role of the tumor microenvironment. Transl. Gastrointest. Cancer 1, 71–80 (2012).
pubmed: 23002431 pmcid: 3448449
Hogdall, D., Lewinska, M. & Andersen, J. B. Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer 4, 239–255 (2018).
pubmed: 29506673 doi: 10.1016/j.trecan.2018.01.007
Cadamuro, M. et al. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1435–1443 (2018).
pubmed: 28757170 doi: 10.1016/j.bbadis.2017.07.028
Mertens, J. C., Rizvi, S. & Gores, G. J. Targeting cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1454–1460 (2018).
pubmed: 28844952 doi: 10.1016/j.bbadis.2017.08.027
Tanimizu, N. et al. Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nat. Commun. 12, 3390 (2021).
pubmed: 34099675 pmcid: 8185093 doi: 10.1038/s41467-021-23575-1
Lee, H. et al. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication 11, 025001 (2019).
pubmed: 30566930 doi: 10.1088/1758-5090/aaf9fa
Allan, A. et al. Patient-specific 3D printed model of biliary ducts with congenital cyst. Quant. Imaging Med. Surg. 9, 86–93 (2019).
pubmed: 30788249 pmcid: 6351815 doi: 10.21037/qims.2018.12.01
Kendre, G. et al. The co-mutational spectrum determines the therapeutic response in murine FGFR2 fusion-driven cholangiocarcinoma. Hepatology 74, 1357–1370 (2021).
pubmed: 33709535 doi: 10.1002/hep.31799
Wintachai, P. et al. Diagnostic and prognostic value of circulating cell-free DNA for cholangiocarcinoma. Diagnostics 11, 999 (2021).
pubmed: 34070951 pmcid: 8228499 doi: 10.3390/diagnostics11060999
Csoma, S. L. et al. Circulating cell-free DNA-based comprehensive molecular analysis of biliary tract cancers using next-generation sequencing. Cancers 14, 233 (2022).
pubmed: 35008396 pmcid: 8750273 doi: 10.3390/cancers14010233
Varghese, A. M. et al. Noninvasive detection of polyclonal acquired resistance to FGFR inhibition in patients with cholangiocarcinoma harboring FGFR2 alterations. JCO Precis Oncol. 5, 44–50 (2021).
doi: 10.1200/PO.20.00178
Goyal, L. et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. Cancer Discov. 9, 1064–1079 (2019).
pubmed: 31109923 pmcid: 6677584 doi: 10.1158/2159-8290.CD-19-0182
van Tienderen, G. S. et al. Hepatobiliary tumor organoids for personalized medicine: a multicenter view on establishment, limitations, and future directions. Cancer Cell 40, 226–230 (2022).
pubmed: 35148815 doi: 10.1016/j.ccell.2022.02.001
Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 (2019).
pubmed: 29394327 doi: 10.1093/biostatistics/kxx069
Lozano, E. et al. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT). J. Control. Release 216, 93–102 (2015).
pubmed: 26278512 doi: 10.1016/j.jconrel.2015.08.022
Katz, S. F. et al. Disruption of Trp53 in livers of mice induces formation of carcinomas with bilineal differentiation. Gastroenterology 142, 1229–1239.e3 (2012).
pubmed: 22342966 doi: 10.1053/j.gastro.2012.02.009
Tschaharganeh, D. F. et al. p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 158, 579–592 (2014).
pubmed: 25083869 pmcid: 4221237 doi: 10.1016/j.cell.2014.05.051
El Khatib, M. et al. Activation of Notch signaling is required for cholangiocarcinoma progression and is enhanced by inactivation of p53 in vivo. PLoS ONE 8, e77433 (2013).
pubmed: 24204826 pmcid: 3813685 doi: 10.1371/journal.pone.0077433
Ikenoue, T. et al. Establishment and analysis of a novel mouse line carrying a conditional knockin allele of a cancer-specific FBXW7 mutation. Sci. Rep. 8, 2021 (2018).
pubmed: 29386660 pmcid: 5792591 doi: 10.1038/s41598-018-19769-1
Manieri, E. et al. JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma. Proc. Natl Acad. Sci. USA 117, 16492–16499 (2020).
pubmed: 32601222 pmcid: 7368313 doi: 10.1073/pnas.2002672117
Cubero, F. J. et al. Loss of c-Jun N-terminal kinase 1 and 2 function in liver epithelial cells triggers biliary hyperproliferation resembling cholangiocarcinoma. Hepatol. Commun. 4, 834–851 (2020).
pubmed: 32490320 pmcid: 7262317 doi: 10.1002/hep4.1495
Marsh, V., Davies, E. J., Williams, G. T. & Clarke, A. R. PTEN loss and KRAS activation cooperate in murine biliary tract malignancies. J. Pathol. 230, 165–173 (2013).
pubmed: 23483557 doi: 10.1002/path.4189
Falcomata, C. et al. Genetic screens identify a context-specific PI3K/p27(Kip1) node driving extrahepatic biliary cancer. Cancer Discov. 11, 3158–3177 (2021).
pubmed: 34282029 pmcid: 7612573 doi: 10.1158/2159-8290.CD-21-0209
Sekiya, S. & Suzuki, A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J. Clin. Invest. 122, 3914–3918 (2012).
pubmed: 23023701 pmcid: 3484442 doi: 10.1172/JCI63065
Crawford, D. R. et al. Characterization of liver injury, oval cell proliferation and cholangiocarcinogenesis in glutathione S-transferase A3 knockout mice. Carcinogenesis 38, 717–727 (2017).
pubmed: 28535182 pmcid: 5862260 doi: 10.1093/carcin/bgx048

Auteurs

Diego F Calvisi (DF)

Institute of Pathology, University of Regensburg, Regensburg, Germany.

Luke Boulter (L)

MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK.

Javier Vaquero (J)

TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.

Anna Saborowski (A)

Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.

Luca Fabris (L)

Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.
Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA.

Pedro M Rodrigues (PM)

National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
Ikerbasque, Basque Foundation for Science, Bilbao, Spain.

Cédric Coulouarn (C)

Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.

Rui E Castro (RE)

Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.

Oreste Segatto (O)

Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Chiara Raggi (C)

Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.

Luc J W van der Laan (LJW)

Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands.

Guido Carpino (G)

Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy.

Benjamin Goeppert (B)

Institute of Pathology and Neuropathology, Ludwigsburg, Germany.
Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland.

Stephanie Roessler (S)

Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.

Timothy J Kendall (TJ)

Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.

Matthias Evert (M)

Institute of Pathology, University of Regensburg, Regensburg, Germany.

Ester Gonzalez-Sanchez (E)

TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.

Juan W Valle (JW)

Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
Division of Cancer Sciences, University of Manchester, Manchester, UK.

Arndt Vogel (A)

Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.

John Bridgewater (J)

Department of Medical Oncology, UCL Cancer Institute, London, UK.

Mitesh J Borad (MJ)

Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA.

Gregory J Gores (GJ)

Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.

Lewis R Roberts (LR)

Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.

Jose J G Marin (JJG)

National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain.

Jesper B Andersen (JB)

Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Domenico Alvaro (D)

Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.

Alejandro Forner (A)

National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.

Jesus M Banales (JM)

National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.

Vincenzo Cardinale (V)

Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.

Rocio I R Macias (RIR)

National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain.

Silve Vicent (S)

University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain.
IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain.

Xin Chen (X)

Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.

Chiara Braconi (C)

School of Cancer Sciences, University of Glasgow, Glasgow, UK.

Monique M A Verstegen (MMA)

Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands.

Laura Fouassier (L)

Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France. laura.fouassier@inserm.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH