Dietary intake of total, heme and non-heme iron and the risk of colorectal cancer in a European prospective cohort study.
Journal
British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
07
02
2022
accepted:
13
01
2023
revised:
10
01
2023
pmc-release:
09
02
2024
medline:
5
4
2023
pubmed:
10
2
2023
entrez:
9
2
2023
Statut:
ppublish
Résumé
Iron is an essential micronutrient with differing intake patterns and metabolism between men and women. Epidemiologic evidence on the association of dietary iron and its heme and non-heme components with colorectal cancer (CRC) development is inconclusive. We examined baseline dietary questionnaire-assessed intakes of total, heme, and non-heme iron and CRC risk in the EPIC cohort. Sex-specific multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using Cox regression. We modelled substitution of a 1 mg/day of heme iron intake with non-heme iron using the leave one-out method. Of 450,105 participants (318,680 women) followed for 14.2 ± 4.0 years, 6162 (3511 women) developed CRC. In men, total iron intake was not associated with CRC risk (highest vs. lowest quintile, HR Our findings suggest potential sex-specific CRC risk associations for higher iron consumption that may differ by dietary sources.
Sections du résumé
BACKGROUND
Iron is an essential micronutrient with differing intake patterns and metabolism between men and women. Epidemiologic evidence on the association of dietary iron and its heme and non-heme components with colorectal cancer (CRC) development is inconclusive.
METHODS
We examined baseline dietary questionnaire-assessed intakes of total, heme, and non-heme iron and CRC risk in the EPIC cohort. Sex-specific multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using Cox regression. We modelled substitution of a 1 mg/day of heme iron intake with non-heme iron using the leave one-out method.
RESULTS
Of 450,105 participants (318,680 women) followed for 14.2 ± 4.0 years, 6162 (3511 women) developed CRC. In men, total iron intake was not associated with CRC risk (highest vs. lowest quintile, HR
CONCLUSIONS
Our findings suggest potential sex-specific CRC risk associations for higher iron consumption that may differ by dietary sources.
Identifiants
pubmed: 36759722
doi: 10.1038/s41416-023-02164-7
pii: 10.1038/s41416-023-02164-7
pmc: PMC10070394
doi:
Substances chimiques
Heme
42VZT0U6YR
Iron
E1UOL152H7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1529-1540Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Global Cancer Observatory-Cancer today [Internet]. IARC-WHO. 2020 [cited 22/12/2020]. https://gco.iarc.fr/today/home .
WCRF. Diet, Nutrition, Physical Activity and Colorectal Cancer. London, UK: World Cancer Research Fund; 2018.
Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16:1599–600.
pubmed: 26514947
doi: 10.1016/S1470-2045(15)00444-1
Hallberg L, Hultén L, Gramatkovski E. Iron absorption from the whole diet in men: how effective is the regulation of iron absorption? Am J Clin Nutr. 1997;66:347–56.
pubmed: 9250114
doi: 10.1093/ajcn/66.2.347
Ishikawa S, Tamaki S, Ohata M, Arihara K, Itoh M. Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: a possible mechanism of heme-induced colon cancer. Mol Nutr food Res. 2010;54:1182–91.
pubmed: 20112302
Glei M, Klenow S, Sauer J, Wegewitz U, Richter K, Pool-Zobel BL. Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes. Mutat Res. 2006;594:162–71.
pubmed: 16226281
doi: 10.1016/j.mrfmmm.2005.08.006
Lunn JC, Kuhnle G, Mai V, Frankenfeld C, Shuker DE, Glen RC, et al. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 2007;28:685–90.
pubmed: 17052997
doi: 10.1093/carcin/bgl192
Cross AJ, Pollock JRA, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63:2358–60.
pubmed: 12750250
Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci: Off J Isfahan Univ Med Sci. 2014;19:164–74.
Hunt JR, Zito CA, Johnson LK. Body iron excretion by healthy men and women. Am J Clin Nutr. 2009;89:1792–8.
pubmed: 19386738
doi: 10.3945/ajcn.2009.27439
Lee DH, Anderson KE, Folsom AR, Jacobs DR Jr. Heme iron, zinc and upper digestive tract cancer: the Iowa Women’s Health Study. Int J Cancer. 2005;117:643–7.
pubmed: 15929082
doi: 10.1002/ijc.21215
Balder HF, Vogel J, Jansen MC, Weijenberg MP, van den Brandt PA, Westenbrink S, et al. Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Preventive Oncol. 2006;15:717–25.
doi: 10.1158/1055-9965.EPI-05-0772
Larsson SC, Adami H-O, Giovannucci E, Wolk A. Re: Heme Iron, Zinc, Alcohol Consumption, and Risk of Colon Cancer. J Natl Cancer Inst. 2005;97:232–3.
pubmed: 15687367
doi: 10.1093/jnci/dji032
Kabat GC, Miller AB, Jain M, Rohan TE. A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women. Br J Cancer. 2007;97:118–22.
pubmed: 17551493
pmcid: 2359661
doi: 10.1038/sj.bjc.6603837
Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 2010;70:2406–14.
pubmed: 20215514
pmcid: 2840051
doi: 10.1158/0008-5472.CAN-09-3929
Zhang X, Giovannucci EL, Smith-Warner SA, Wu K, Fuchs CS, Pollak M, et al. A prospective study of intakes of zinc and heme iron and colorectal cancer risk in men and women. Cancer Causes Control. 2011;22:1627–37.
pubmed: 21909950
pmcid: 3694413
doi: 10.1007/s10552-011-9839-z
Hara A, Sasazuki S, Inoue M, Iwasaki M, Shimazu T, Sawada N, et al. Zinc and heme iron intakes and risk of colorectal cancer: a population-based prospective cohort study in Japan. Am J Clin Nutr. 2012;96:864–73.
pubmed: 22952177
doi: 10.3945/ajcn.112.041202
Etemadi A, Abnet CC, Graubard BI, Beane-Freeman L, Freedman ND, Liao L, et al. Anatomical subsite can modify the association between meat and meat compounds and risk of colorectal adenocarcinoma: Findings from three large US cohorts. Int J Cancer. 2018;143:2261–70.
pubmed: 29873077
pmcid: 6195451
doi: 10.1002/ijc.31612
Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk—a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Preventive Oncol. 2014;23:12–31.
doi: 10.1158/1055-9965.EPI-13-0733
Qiao L, Feng Y. Intakes of heme iron and zinc and colorectal cancer incidence: a meta-analysis of prospective studies. Cancer Causes Control. 2013;24:1175–83.
pubmed: 23568532
doi: 10.1007/s10552-013-0197-x
Bastide N, Pierre F, Corpet D. Heme Iron from Meat and Risk of Colorectal Cancer: A Meta-analysis and a Review of the Mechanisms Involved. Cancer Prev Res (Phila, Pa). 2011;4:177–84.
doi: 10.1158/1940-6207.CAPR-10-0113
Lee DH, Anderson KE, Harnack LJ, Folsom AR, Jacobs DR Jr. Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women’s Health Study. J Natl Cancer Inst. 2004;96:403–7.
pubmed: 14996862
doi: 10.1093/jnci/djh047
Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24.
pubmed: 12639222
doi: 10.1079/PHN2002394
Gonzalez CA. The European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2006;9:124–6.
pubmed: 16512959
doi: 10.1079/PHN2005934
Van Puyvelde H, Perez-Cornago A, Casagrande C, Nicolas G, Versele V, Skeie G, et al. Comparing Calculated Nutrient Intakes Using Different Food Composition Databases: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Nutrients 2020;12:2906.
pubmed: 32977480
pmcid: 7650652
doi: 10.3390/nu12102906
Cross AJ, Harnly JM, Ferrucci LM, Risch A, Mayne ST, Sinha R. Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food Nutr Sci. 2012;3:905–13.
pubmed: 23459329
pmcid: 3583546
Jakszyn P, Agudo A, Lujan-Barroso L, Bueno-de-Mesquita HB, Jenab M, Navarro C, et al. Dietary intake of heme iron and risk of gastric cancer in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;130:2654–63.
pubmed: 21717452
doi: 10.1002/ijc.26263
Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348:2599–608.
pubmed: 12826634
doi: 10.1056/NEJMoa025039
Kleinbaum D, Klein M. Survival Analysis: A Self-Learning Text. 1. NY, USA: Springer; 2005. p. 700.
Hess KR. Graphical methods for assessing violations of the proportional hazards assumption in cox regression. Stat Med. 1995;14:1707–23.
pubmed: 7481205
doi: 10.1002/sim.4780141510
Harrell FEJ. [Internet]. Rms: Regression Modeling Strategies.R package version 6.3-0 [cited 31/12/2016]. https://CRAN.R-project.org/package=rms .
Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transpl. 2007;40:381–7.
doi: 10.1038/sj.bmt.1705727
Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, et al. Statistical methods for studying disease subtype heterogeneity. Stat Med. 2016;35:782–800.
pubmed: 26619806
doi: 10.1002/sim.6793
Ibsen DB, Laursen ASD, Würtz AML, Dahm CC, Rimm EB, Parner ET, et al. Food substitution models for nutritional epidemiology. Am J Clin Nutr. 2021;113:294–303.
pubmed: 33300036
doi: 10.1093/ajcn/nqaa315
Song M, Giovannucci E. Substitution analysis in nutritional epidemiology: proceed with caution. Eur J Epidemiol. 2018;33:137–40.
pubmed: 29478107
doi: 10.1007/s10654-018-0371-2
Tomova GD, Gilthorpe MS, Tennant PWG. Theory and performance of substitution models for estimating relative causal effects in nutritional epidemiology. Am J Clin Nutr. 2022;116:1379–88.
pubmed: 36223891
pmcid: 9630885
doi: 10.1093/ajcn/nqac188
van den Brandt PA. Red meat, processed meat, and other dietary protein sources and risk of overall and cause-specific mortality in The Netherlands Cohort Study. Eur J Epidemiol. 2019;34:351–69.
pubmed: 30673923
pmcid: 6451725
doi: 10.1007/s10654-019-00483-9
Alferink LJ, Kiefte-de Jong JC, Erler NS, Veldt BJ, Schoufour JD, de Knegt RJ, et al. Association of dietary macronutrient composition and non-alcoholic fatty liver disease in an ageing population: the Rotterdam Study. Gut 2019;68:1088–98.
pubmed: 30064987
doi: 10.1136/gutjnl-2017-315940
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.
Ronco A, Calderon J, Mendoza B, Espinosa E, Lasalvia-Galante E. Dietary Iron Sources and Colorectal Cancer Risk: A Role for Sex. Journal of Cancer Science and Treatment. 2019:93–110.
Luo H, Zhang NQ, Huang J, Zhang X, Feng XL, Pan ZZ, et al. Different forms and sources of iron in relation to colorectal cancer risk: a case-control study in China. Br J Nutr. 2019;121:735–47.
pubmed: 30688185
doi: 10.1017/S0007114519000023
Fairweather-Tait SJ, Jennings A, Harvey LJ, Berry R, Walton J, Dainty JR. Modeling tool for calculating dietary iron bioavailability in iron-sufficient adults. Am J Clin Nutr. 2017;105:1408–14.
pubmed: 28381473
pmcid: 5533300
doi: 10.3945/ajcn.116.147389
Woodhead JC, Drulis JM, Nelson SE, Janghorbani M, Fomon SJ. Gender-Related Differences in Iron Absorption by Preadolescent Children. Pediatr Res. 1991;29:435–9.
pubmed: 1896246
doi: 10.1203/00006450-199105010-00005
Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33:940–59.
pubmed: 11470229
doi: 10.1016/S1357-2725(01)00063-2
Johnston KL, Johnson DM, Marks J, Srai SK, Debnam ES, Sharp PA. Non-haem iron transport in the rat proximal colon. Eur J Clin Investig. 2006;36:35–40.
doi: 10.1111/j.1365-2362.2006.01585.x
Takeuchi K, Bjarnason I, Laftah AH, Latunde-Dada GO, Simpson RJ, McKie AT. Expression of iron absorption genes in mouse large intestine. Scand J Gastroenterol. 2005;40:169–77.
pubmed: 15764147
doi: 10.1080/00365520510011489
Sesink AL, Termont DS, Kleibeuker JH, Van der Meer R. Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 1999;59:5704–9.
pubmed: 10582688
Watling CZ, Schmidt JA, Dunneram Y, Tong TYN, Kelly RK, Knuppel A, et al. Risk of cancer in regular and low meat-eaters, fish-eaters, and vegetarians: a prospective analysis of UK Biobank participants. BMC Med. 2022;20:73.
pubmed: 35197066
pmcid: 8867885
doi: 10.1186/s12916-022-02256-w
Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study. J Nutr Biochem. 2019;67:20–7.
pubmed: 30831460
pmcid: 6546957
doi: 10.1016/j.jnutbio.2019.01.010
Kamphuis JBJ, Mercier-Bonin M, Eutamène H, Theodorou V. Mucus organisation is shaped by colonic content; a new view. Sci Rep. 2017;7:8527.
pubmed: 28819121
pmcid: 5561085
doi: 10.1038/s41598-017-08938-3
Winter J, Nyskohus L, Young GP, Hu Y, Conlon MA, Bird AR, et al. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon. Cancer Prev Res (Philos). 2011;4:1920–8.
doi: 10.1158/1940-6207.CAPR-11-0176
Le Leu RK, Winter JM, Christophersen CT, Young GP, Humphreys KJ, Hu Y, et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015;114:220–30.
pubmed: 26084032
pmcid: 4531472
doi: 10.1017/S0007114515001750
Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5:e10667.
pubmed: 20498852
pmcid: 2871786
doi: 10.1371/journal.pone.0010667
Skeie G, Braaten T, Hjartåker A, Lentjes M, Amiano P, Jakszyn P, et al. Use of dietary supplements in the European Prospective Investigation into Cancer and Nutrition calibration study. Eur J Clin Nutr. 2009;63:S226–38.
pubmed: 19888276
doi: 10.1038/ejcn.2009.83