Androgen Deprivation Freezes Hormone-Sensitive Prostate Cancer Cells in a Reversible, Genetically Unstable Quasi-Apoptotic State, Bursting into Full Apoptosis upon Poly(ADP-ribose) Polymerase Inhibition.
PARP
androgen deprivation therapy
apoptosis
hormone-sensitive prostate cancer
quasi-apoptotic state
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
20 Jan 2023
20 Jan 2023
Historique:
received:
31
12
2022
revised:
13
01
2023
accepted:
18
01
2023
entrez:
11
2
2023
pubmed:
12
2
2023
medline:
15
2
2023
Statut:
epublish
Résumé
Androgen deprivation therapy (ADT) is a powerful treatment for metastatic hormone-sensitive prostate cancer (mHSPC) patients, but eventually and inevitably, cancer relapses, progressing to the fatal castration-resistant (CR)PC stage. Progression implies the emergence of cells proliferating in the absence of androgen through still elusive mechanisms. We show here for the first time that ADT induces LNCaP mHSPC cells to collectively enter a metastable quasi-apoptotic state (QUAPS) consisting of partial mitochondrial permeabilization, limited BAX and caspase activation, and moderate induction of caspase-dependent dsDNA breaks; despite this, cells maintain full viability. QUAPS is destabilized by poly(ADP)-polymerase inhibition (PARPi), breaking off toward overt intrinsic apoptosis and culture extinction. Instead, QUAPS is rapidly and efficiently reverted upon androgen restoration, with mitochondria rapidly recovering integrity and cells collectively resuming normal proliferation. Notably, replication restarts before DNA repair is completed, and implies an increased micronuclei frequency, indicating that ADT promotes genetic instability. The recovered cells re-acquire insensitivity to PARPi (as untreated LNCaP), pointing to specific, context-dependent vulnerability of mHSPC cells to PARPi during ADT. Summarizing, QUAPS is an unstable, pro-mutagenic state developing as a pro-survival pathway stabilized by PARP, and constitutes a novel viewpoint explaining how ADT-treated mHSPC may progress to CRPC, indicating possible preventive countermeasures.
Identifiants
pubmed: 36768364
pii: ijms24032040
doi: 10.3390/ijms24032040
pmc: PMC9917232
pii:
doi:
Substances chimiques
Androgens
0
Androgen Antagonists
0
Poly(ADP-ribose) Polymerases
EC 2.4.2.30
Caspases
EC 3.4.22.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Regione Lazio
ID : A0375-2020-36660
Références
Int J Cancer. 2019 Aug 15;145(4):1055-1067
pubmed: 30737777
J Exp Clin Cancer Res. 2022 Apr 5;41(1):125
pubmed: 35382861
Prostate. 2009 Dec 1;69(16):1724-9
pubmed: 19676093
Br J Pharmacol. 2014 Apr;171(8):2000-16
pubmed: 24684389
Oncol Lett. 2020 Nov;20(5):201
pubmed: 32963607
Am J Pathol. 1995 Jun;146(6):1368-75
pubmed: 7778676
Exp Cell Res. 1995 Dec;221(2):470-7
pubmed: 7493647
PLoS One. 2013 Jun 28;8(6):e68003
pubmed: 23840802
Oncol Rep. 2005 Sep;14(3):595-9
pubmed: 16077961
Environ Mol Mutagen. 2000;35(3):206-21
pubmed: 10737956
Cells. 2019 Jan 20;8(1):
pubmed: 30669516
Biochem Soc Trans. 2000 Feb;28(2):56-61
pubmed: 10816099
Urol Clin North Am. 2022 Nov;49(4):615-626
pubmed: 36309418
FASEB J. 2005 Sep;19(11):1504-6
pubmed: 15972297
Int J Mol Sci. 2022 Jan 21;23(3):
pubmed: 35163077
Mutat Res. 2004 Nov 22;556(1-2):25-34
pubmed: 15491629
Mitochondrion. 2010 Nov;10(6):604-13
pubmed: 20709625
Nat Commun. 2017 Aug 29;8(1):374
pubmed: 28851861
Cells. 2020 Jun 10;9(6):
pubmed: 32531951
Exp Cell Res. 1996 Mar 15;223(2):340-7
pubmed: 8601411
Biochem Pharmacol. 2012 Nov 15;84(10):1292-306
pubmed: 22846600
Exp Cell Res. 1994 Jun;212(2):367-73
pubmed: 8187831
Nature. 2005 Apr 14;434(7035):917-21
pubmed: 15829967
Biochem Pharmacol. 2021 Nov;193:114765
pubmed: 34536356
Adv Enzyme Regul. 2000;40:183-215
pubmed: 10828352
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4230-5
pubmed: 20160104
Biochim Biophys Acta Mol Basis Dis. 2018 May;1864(5 Pt A):1717-1727
pubmed: 29477409
Mutagenesis. 2010 Sep;25(5):489-98
pubmed: 20581221
Prostate. 1998 Aug 1;36(3):201-6
pubmed: 9687993
BMC Biol. 2017 Oct 24;15(1):92
pubmed: 29065871
Metabolites. 2022 Dec 31;13(1):
pubmed: 36676990
Cancer Treat Rev. 2014 Feb;40(1):31-40
pubmed: 23993415
Cancers (Basel). 2022 Feb 04;14(3):
pubmed: 35159068
Res Rep Urol. 2021 Jun 30;13:457-472
pubmed: 34235102
Apoptosis. 2008 Mar;13(3):377-82
pubmed: 18283539
JAMA. 2005 Jul 13;294(2):238-44
pubmed: 16014598
J Cell Biol. 2017 Oct 2;216(10):3355-3368
pubmed: 28768686
J Clin Med. 2021 Dec 27;11(1):
pubmed: 35011880
Open Biol. 2020 Aug;10(8):200130
pubmed: 32810419
Am J Physiol Cell Physiol. 2022 Sep 1;323(3):C835-C846
pubmed: 35704694
Int J Mol Sci. 2022 Jul 29;23(15):
pubmed: 35955544
Mol Biol Cell. 2012 Jun;23(12):2240-52
pubmed: 22535522
FEBS Lett. 2019 Jul;593(13):1566-1579
pubmed: 31211858
J Natl Compr Canc Netw. 2019 May 1;17(5):479-505
pubmed: 31085757
J Clin Invest. 2022 Jul 1;132(13):
pubmed: 35775483
Int J Androl. 2010 Oct 1;33(5):686-95
pubmed: 19906188
Exp Cell Res. 1995 Dec;221(2):462-9
pubmed: 7493646
Invest New Drugs. 2013 Aug;31(4):949-58
pubmed: 23315029
PLoS One. 2015 Mar 30;10(3):e0122503
pubmed: 25822979
Mech Ageing Dev. 2005 Jan;126(1):111-7
pubmed: 15610769
Mol Cell. 2015 Apr 16;58(2):284-96
pubmed: 25866249
PLoS One. 2017 Feb 24;12(2):e0172048
pubmed: 28234906
Front Pharmacol. 2018 Nov 13;9:1307
pubmed: 30483138
Mol Cancer Res. 2022 May 4;20(5):782-793
pubmed: 35082166
Mutat Res. 2007 Jun 15;630(1-2):122-8
pubmed: 17509930
Cancers (Basel). 2011 Mar 24;3(2):1498-512
pubmed: 24212771