Phosphorus and carbohydrate metabolism contributes to low phosphorus tolerance in cotton.
Carbohydrate accumulation, phosphorus metabolism
Cotton
Low phosphorus tolerance
Root morphology
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
16 Feb 2023
16 Feb 2023
Historique:
received:
08
08
2022
accepted:
01
02
2023
entrez:
16
2
2023
pubmed:
17
2
2023
medline:
18
2
2023
Statut:
epublish
Résumé
Low phosphorus (P) is one of the limiting factors in sustainable cotton production. However, little is known about the performance of contrasting low P tolerant cotton genotypes that might be a possible option to grow in low P condition. In the current study, we characterized the response of two cotton genotypes, Jimian169 a strong low P tolerant, and DES926 a weak low P tolerant genotypes under low and normal P conditions. The results showed that low P greatly inhibited growth, dry matter production, photosynthesis, and enzymatic activities related to antioxidant system and carbohydrate metabolism and the inhibition was more in DES926 as compared to Jimian169. In contrast, low P improved root morphology, carbohydrate accumulation, and P metabolism, especially in Jimian169, whereas the opposite responses were observed for DES926. The strong low P tolerance in Jimian169 is linked with a better root system and enhanced P and carbohydrate metabolism, suggesting that Jimian169 is a model genotype for cotton breeding. Results thus indicate that the Jimian169, compared with DES926, tolerates low P by enhancing carbohydrate metabolism and by inducing the activity of several enzymes related to P metabolism. This apparently causes rapid P turnover and enables the Jimian169 to use P more efficiently. Moreover, the transcript level of the key genes could provide useful information to study the molecular mechanism of low P tolerance in cotton.
Identifiants
pubmed: 36792994
doi: 10.1186/s12870-023-04100-6
pii: 10.1186/s12870-023-04100-6
pmc: PMC9933316
doi:
Substances chimiques
Phosphorus
27YLU75U4W
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
97Informations de copyright
© 2023. The Author(s).
Références
Tree Physiol. 2013 Feb;33(2):221-32
pubmed: 23370549
Plant Cell Environ. 2015 Apr;38(4):790-9
pubmed: 25258291
Ann Bot. 2006 Oct;98(4):693-713
pubmed: 16769731
Ambio. 2015 Mar;44 Suppl 2:S274-85
pubmed: 25681984
Plant Physiol. 1990 Jan;92(1):29-36
pubmed: 16667261
J Exp Bot. 2008;59(1):93-109
pubmed: 18212031
Arch Biochem Biophys. 1968 Apr;125(1):189-98
pubmed: 5655425
Plants (Basel). 2020 Feb 15;9(2):
pubmed: 32075340
Planta. 2005 Jun;221(4):479-92
pubmed: 15657716
Front Plant Sci. 2016 Nov 24;7:1776
pubmed: 27933086
Appl Environ Microbiol. 1998 May;64(5):1594-600
pubmed: 9572922
New Phytol. 2003 Mar;157(3):423-447
pubmed: 33873400
Plant J. 2019 Mar;97(5):947-969
pubmed: 30472798
Plants (Basel). 2019 May 08;8(5):
pubmed: 31071932
Plant Physiol. 1989 Jan;89(1):225-30
pubmed: 16666518
Nat Biotechnol. 2000 Apr;18(4):450-3
pubmed: 10748530
Plant Physiol. 2018 May;177(1):271-284
pubmed: 29540590
Planta. 2007 Mar;225(4):907-18
pubmed: 17033812
J Exp Bot. 2009;60(8):2379-90
pubmed: 19321646
BMC Plant Biol. 2019 Dec 18;19(1):566
pubmed: 31852440
Plant Mol Biol. 2010 Mar;72(4-5):423-32
pubmed: 19936943
Plants (Basel). 2020 Feb 01;9(2):
pubmed: 32024197
Plant Physiol. 1992 Oct;100(2):1008-13
pubmed: 16653008
Food Sci Nutr. 2020 Mar 19;8(5):2406-2418
pubmed: 32405397
J Sci Food Agric. 2020 Apr;100(6):2761-2773
pubmed: 32020619
Plant Physiol. 2010 Feb;152(2):854-65
pubmed: 19955264
J Exp Bot. 2015 Jun;66(12):3523-40
pubmed: 25944926
Front Plant Sci. 2020 Jun 18;11:870
pubmed: 32625228
Plant Cell Environ. 2018 Jul;41(7):1483-1496
pubmed: 29520969
Trends Plant Sci. 2006 Dec;11(12):610-7
pubmed: 17092760
J Exp Bot. 2010 Jul;61(12):3177-89
pubmed: 20421195
Front Plant Sci. 2022 Feb 07;13:825116
pubmed: 35197997
New Phytol. 2000 Mar;145(3):565-574
pubmed: 33862899
Plant Physiol. 2003 Mar;131(3):1064-79
pubmed: 12644659
J Exp Bot. 2006;57(9):2049-59
pubmed: 16720613
New Phytol. 2006;169(2):223-36
pubmed: 16411926
Eur J Biochem. 2002 Dec;269(24):6278-86
pubmed: 12473124
Plant Physiol. 1992 Mar;98(3):1128-32
pubmed: 16668736
J Exp Bot. 2005 Jul;56(417):1943-50
pubmed: 15911558
Plant Physiol Biochem. 2020 Apr;149:61-74
pubmed: 32050119
PLoS One. 2017 Mar 22;12(3):e0174349
pubmed: 28328927
Plant Physiol. 2003 Dec;133(4):1947-58
pubmed: 14605228
Ann Bot. 2013 Jul;112(2):391-408
pubmed: 23267006
J Exp Bot. 2003 Mar;54(384):961-9
pubmed: 12598567
Eur J Biochem. 2003 Oct;270(19):3904-15
pubmed: 14511372
Annu Rev Plant Biol. 2014;65:95-123
pubmed: 24579991
Trends Ecol Evol. 2009 Apr;24(4):201-7
pubmed: 19246117