An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options.
Escherichia coli
RNA polymerase
cryo-EM
transcriptional pausing
transcriptional regulation
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
21 02 2023
21 02 2023
Historique:
entrez:
16
2
2023
pubmed:
17
2
2023
medline:
22
2
2023
Statut:
ppublish
Résumé
Transcriptional pausing underpins the regulation of cellular RNA synthesis, but its mechanism remains incompletely understood. Sequence-specific interactions of DNA and RNA with the dynamic, multidomain RNA polymerase (RNAP) trigger reversible conformational changes at pause sites that temporarily interrupt the nucleotide addition cycle. These interactions initially rearrange the elongation complex (EC) into an elemental paused EC (ePEC). ePECs can form longer-lived PECs by further rearrangements or interactions of diffusible regulators. For both bacterial and mammalian RNAPs, a half-translocated state in which the next DNA template base fails to load into the active site appears central to the ePEC. Some RNAPs also swivel interconnected modules that may stabilize the ePEC. However, it is unclear whether swiveling and half-translocation are requisite features of a single ePEC state or if multiple ePEC states exist. Here, we use cryo-electron microscopy (cryo-EM) analysis of ePECs with different RNA-DNA sequences combined with biochemical probes of ePEC structure to define an interconverting ensemble of ePEC states. ePECs occupy either pre- or half-translocated states but do not always swivel, indicating that difficulty in forming the posttranslocated state at certain RNA-DNA sequences may be the essence of the ePEC. The existence of multiple ePEC conformations has broad implications for transcriptional regulation.
Identifiants
pubmed: 36795753
doi: 10.1073/pnas.2215945120
pmc: PMC9974457
doi:
Substances chimiques
DNA-Directed RNA Polymerases
EC 2.7.7.6
RNA
63231-63-0
DNA
9007-49-2
Nucleotides
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2215945120Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM038330
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM038660
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM118130
Pays : United States
Références
Biochem Soc Trans. 2006 Dec;34(Pt 6):1062-6
pubmed: 17073751
Nucleic Acids Res. 2021 May 7;49(8):4402-4420
pubmed: 33788942
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4051-6
pubmed: 27035955
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2205278119
pubmed: 35951650
Front Mol Biosci. 2021 Jan 13;7:607158
pubmed: 33521053
Mol Cell. 2018 Mar 1;69(5):802-815.e5
pubmed: 29499135
Nucleic Acids Res. 2021 Jan 11;49(1):15-24
pubmed: 33330935
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18384-18390
pubmed: 31455742
Cell Rep. 2022 Apr 26;39(4):110749
pubmed: 35476989
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2368-75
pubmed: 24853501
Cell. 2018 Jun 14;173(7):1650-1662.e14
pubmed: 29887376
J Mol Biol. 2019 Sep 20;431(20):4007-4029
pubmed: 31310765
J Bacteriol. 2021 Mar 23;203(8):
pubmed: 33139481
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36):
pubmed: 34470825
Mol Cell. 2019 Jul 25;75(2):298-309.e4
pubmed: 31103420
Nat Rev Microbiol. 2021 Feb;19(2):95-109
pubmed: 33122819
Curr Opin Cell Biol. 2017 Jun;46:72-80
pubmed: 28363125
Mol Cell. 2022 Oct 20;82(20):3885-3900.e10
pubmed: 36220101
Genome Biol. 2015 May 15;16:98
pubmed: 25976475
Nat Commun. 2022 Mar 22;13(1):1546
pubmed: 35318334
Mol Cell. 2015 Feb 5;57(3):408-21
pubmed: 25601758
Cell. 2006 Jun 16;125(6):1083-94
pubmed: 16777599
Nat Methods. 2020 Sep;17(9):897-900
pubmed: 32778833
Mol Cell. 2019 Apr 4;74(1):143-157.e5
pubmed: 30795892
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19772-7
pubmed: 24218560
Nat Commun. 2018 Jul 26;9(1):2930
pubmed: 30050038
Anal Biochem. 1990 Sep;189(2):254-61
pubmed: 1704199
Nature. 2010 Dec 16;468(7326):978-82
pubmed: 21124318
Elife. 2017 Mar 20;6:
pubmed: 28318486
J Mol Biol. 2015 Jul 31;427(15):2435-2450
pubmed: 26055538
Microbiol Spectr. 2018 Sep;6(5):
pubmed: 30191803
Protein Sci. 2011 Jun;20(6):986-95
pubmed: 21416542
Science. 2014 Jun 13;344(6189):1285-9
pubmed: 24926020
Mol Cell. 2020 Sep 3;79(5):797-811.e8
pubmed: 32750314
J Biol Chem. 2007 Jun 29;282(26):19020-8
pubmed: 17502377
Cell. 1985 Aug;42(1):259-69
pubmed: 2990726
Mol Cell. 2020 Sep 17;79(6):1024-1036.e5
pubmed: 32871103
J Mol Biol. 2007 Sep 21;372(3):774-97
pubmed: 17681537
Science. 2014 May 30;344(6187):1042-7
pubmed: 24789973
CPT Pharmacometrics Syst Pharmacol. 2022 Mar;11(3):290-301
pubmed: 35064965
Crit Rev Biochem Mol Biol. 2020 Dec;55(6):716-728
pubmed: 33003953
J Mol Biol. 2010 Jan 29;395(4):671-85
pubmed: 19895820
Methods Enzymol. 1996;274:334-53
pubmed: 8902817
J Mol Biol. 1997 Apr 25;268(1):54-68
pubmed: 9149141
Elife. 2019 Jan 08;8:
pubmed: 30618376
J Mol Biol. 1993 Sep 5;233(1):25-42
pubmed: 8377190
Nucleic Acids Res. 2014 Nov 10;42(20):12707-21
pubmed: 25336618
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7665-70
pubmed: 24753580
Nat Struct Mol Biol. 2014 Sep;21(9):794-802
pubmed: 25108353
Annu Rev Microbiol. 2021 Oct 8;75:291-314
pubmed: 34348029
Mol Cell. 2007 Aug 3;27(3):406-19
pubmed: 17679091
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4374-80
pubmed: 26216999
Nature. 2018 Aug;560(7720):601-606
pubmed: 30135580
Mol Cell. 2015 May 7;58(3):534-40
pubmed: 25866247
Elife. 2016 Oct 04;5:
pubmed: 27697152
Mol Cell. 2018 Mar 1;69(5):816-827.e4
pubmed: 29499136
EMBO J. 2012 Feb 1;31(3):630-9
pubmed: 22124324
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4005-14
pubmed: 27339134
Mol Cell. 2011 Nov 18;44(4):635-46
pubmed: 22099310
Nat Commun. 2022 Aug 15;13(1):4668
pubmed: 35970830