Pathogen inactivation methods to prevent transfusion-transmissible arboviruses: A systematic review and meta-analysis.
Chikungunya virus
Dengue virus
West Nile virus
Zika virus
arboviruses
blood donors
blood safety
blood transfusion
virus inactivation
Journal
Tropical medicine & international health : TM & IH
ISSN: 1365-3156
Titre abrégé: Trop Med Int Health
Pays: England
ID NLM: 9610576
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
medline:
4
4
2023
pubmed:
23
2
2023
entrez:
22
2
2023
Statut:
ppublish
Résumé
Arboviruses are emerging as a relevant threat to transfusion safety. Pathogen inactivation methods (PIMs) may reduce the risk of transmission through transfusion, as long as they meet minimum standards for effectiveness. This study aims to assess the log reduction of viral load achieved with different PIMs, according to the blood product they are used on and the arbovirus targeted. Systematic literature review and meta-analysis. Searches were conducted in MEDLINE and Embase. The study protocol was registered in PROSPERO CRD42022312061. We selected records reporting the log reduction of viral load achieved with the main PIMs (amotosalen + UVA light [INTERCEPT], riboflavin + UV light [Mirasol], methylene blue + visible light/UVC light [THERAFLEX], solvent detergent, amustaline [INTERCEPT] and PEN110 [Inactine]), applied to any blood product (plasma, platelets, red blood cells or whole blood) and for any arbovirus. The log reduction of viral loads was assessed by obtaining the mean log reduction factor (LRF). We compared and classified the LRF of different techniques using statistical methods. We included 59 publications reporting LRF results in 17 arboviruses. For 13 arboviruses, including Chikungunya virus, Dengue virus, West Nile virus and Zika virus, at least one of the methods achieves adequate or optimal log reduction of viral load-mean LRF ≥4. The LRF achieved with riboflavin + UV light is inferior to the rest of the techniques, both overall and specifically for plasma, platelets preserved in platelet additive solution (PAS)/plasma, and red blood cells/whole blood. The LRF achieved using Mirasol is also lower for inactivating Chikungunya virus, Dengue virus and Zika virus. For West Nile virus, we found no significant differences. In plasma, the method that achieves the highest LRF is solvent/detergent; in platelets, THERAFLEX and INTERCEPT; and in red blood cells/whole blood, PEN110 (Inactine). Not all PIMs achieve the same LRF, nor is this equivalent between the different arboviruses or blood products. Overall, the LRFs achieved using riboflavin + UV light (Mirasol) are inferior to those achieved with the rest of the PIMs. Regarding the others, LRFs vary by arbovirus and blood product. In light of the threat of different arboviruses, blood establishments should have already validated PIMs and be logistically prepared to implement these techniques quickly.
Substances chimiques
PEN 110
0
Detergents
0
Polyamines
0
Riboflavin
TLM2976OFR
Types de publication
Meta-Analysis
Systematic Review
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
262-274Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Kleinman S. Pathogen inactivation: emerging indications. Curr Opin Hematol. 2015;22(6):547-53. https://doi.org/10.1097/MOH.0000000000000186
Callén L. Inactivación de patógenos en componentes sanguíneos. XXI Congreso Nacional de la SETS. Simposio S10. Accessed 10 February 2022. http://www.sets.es/index.php/cursos/biblioteca-virtual/congresos-1/congreso-2010/210-ponencias-12-de-junio/file.
Pérez Carrillo JA. Tecnologías de reducción de patógenos: una alternativa en la seguridad transfusional. Grupo Cooperativo Iberoamericano de Medicina Transfusional (online). Accessed 10 February 2022. https://gciamt.org/wp-content/uploads/2020/05/PRT-GCIAMT-Jose%CC%81-Arnulfo-Pe%CC%81rez-Feb-2020-1.pdf.
Pérez AI. Inactivación de hematíes. XXI Congreso Nacional de la SETS. Simposio S10-3 (online), Accessed 10 February 2022. http://www.sets.es/index.php/cursos/biblioteca-virtual/congresos-1/congreso-2010/210-ponencias-12-de-junio/file.
Epstein JS, Vostal JG. FDA approach to evaluation of pathogen reduction technology. Transfusion. 2003;43(10):1347-50. https://doi.org/10.1046/j.1537-2995.2003.00584
Pelletier JP, Transue S, Snyder EL. Pathogen inactivation techniques. Best Pract Res Clin Haematol. 2006;19(1):205-42. https://doi.org/10.1016/j.beha.2005.04.001
Lozano M, Cid J. Pathogen inactivation: coming of age. Curr Opin Hematol. 2013;20(6):540-5. https://doi.org/10.1097/MOH.0b013e328365a18f
Giménez-Richarte Á, Ortiz de Salazar MI, Giménez-Richarte MP, Collado M, Fernández PL, Clavijo C, et al. Transfusion-transmitted arboviruses: update and systematic review. PLoS Negl Trop Dis. 2022;16(10):e0010843. https://doi.org/10.1371/journal.pntd.0010843
Schlenke P. Pathogen inactivation technologies for cellular blood components: an update. Transfus Med Hemother. 2014;41(4):309-25. https://doi.org/10.1159/000365646
Rasongles P, Angelini-Tibert MF, Simon P, Currie C, Isola H, Kientz D, et al. Transfusion of platelet components prepared with photochemical pathogen inactivation treatment during a chikungunya virus epidemic in Ile de La Reunion. Transfusion. 2009;49:1083-91. https://doi.org/10.1111/j.1537-2995.2009.02111.x
Lin L, Hanson CV, Alter HJ, Jauvin V, Bernard KA, Murthy KK, et al. Inactivation of viruses in platelet concentrates by photochemical treatment with amotosalen and long-wavelength ultraviolet light. Transfusion. 2005;45(4):580-90. https://doi.org/10.1111/j.0041-1132.2005.04316.x
Tsetsarkin KA, Sampson-Johannes A, Sawyer L, Kinsey J, Higgs S, Vanlandingham DL. Photochemical inactivation of chikungunya virus in human apheresis platelet components by amotosalen and UVA light. Am J Trop Med Hyg. 2013;88(6):1163-9. https://doi.org/10.4269/ajtmh.12-0603
Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011; Accessed 10 February 2022. www.cochrane-handbook.org.
Mohr H, Steil L, Gravemann U, Thiele T, Hammer E, Greinacher A, et al. A novel approach to pathogen reduction in platelet concentrates using short-wave ultraviolet light. Transfusion. 2009;49(12):2612-24. https://doi.org/10.1111/j.1537-2995.2009.02334.x
Lanteri MC, Santa-Maria F, Laughhunn A, Girard YA, Picard-Maureau M, Payrat JM, et al. Inactivation of a broad spectrum of viruses and parasites by photochemical treatment of plasma and platelets using amotosalen and ultraviolet a light. Transfusion. 2020;60(6):1319-31. https://doi.org/10.1111/trf.15807
World Health Organization. Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products. WHO Technical Report 2004: 924; Annex 4, Accessed 19 September 2022. https://cdn.who.int/media/docs/default-source/biologicals/blood-products/who-trs-924-anenx4.pdf?sfvrsn=c6ba33e4_4&download=true.
Law M, Stewart D, Pollock N. Critical review form - quantitative studies. McMaster University. Accessed 19 September 2022. https://www.unisa.edu.au/siteassets/episerver-6-files/global/health/sansom/documents/icahe/cats/mcmasters_quantitative-review.pdf.
Long AF. Evaluation tool for qualitative studies. University of Salford. Accessed 19 September 2022. https://usir.salford.ac.uk/id/eprint/12970/1/Evaluation_Tool_for_Qualitative_Studies.pdf.
Kempf C, Stucki M, Boschetti N. Pathogen inactivation and removal procedures used in the production of intravenous immunoglobulins. Biologicals. 2007;35(1):35-42. https://doi.org/10.1016/j.biologicals.2006.01.002
Stramer SL, Lanteri MC, Brodsky JP, Foster GA, Krysztof DE, Groves JA, et al. Mitigating the risk of transfusion-transmitted infections with vector-borne agents solely by means of pathogen reduction. Transfusion. 2022;62(7):1388-98. https://doi.org/10.1111/trf.16950
Hayes C, Stephens L, Fridey JL, Snyder RE, Groves JA, Stramer SL, et al. Probable transfusion transmission of West Nile virus from an apheresis platelet that screened non-reactive by individual donor-nucleic acid testing. Transfusion. 2020;60(2):424-9. https://doi.org/10.1111/trf.15568
Grégoire Y, Delage G, Custer B, Rochette S, Renaud C, Lewin A, et al. Cost-effectiveness of pathogen reduction technology for plasma and platelets in Québec: a focus on potential emerging pathogens. Transfusion. 2022;62(6):1208-17. https://doi.org/10.1111/trf.16926
Faddy HM, Fryk JJ, Prow NA, Watterson D, Young PR, Hall RA, et al. Inactivation of dengue, Chikungunya, and Ross River viruses in platelet concentrates after treatment with ultraviolet C light. Transfusion. 2016;56(6):1548-55. https://doi.org/10.1111/trf.13519
Rossini G, Silvestri AR, Govoni M, Pierro AM, Gaibani P, Cavrini F, et al. Photochemical inactivation of chikungunya virus using the Mirasol pathogen reduction technology (PRT) system in platelets. Vox Sang. 2011;101(1):185-6. https://doi.org/10.1111/j.1423-0410.2011.01498-2.x
Vanlandingham DL, Keil SD, Horne KM, Pyles R, Goodrich RP, Higgs S. Photochemical inactivation of chikungunya virus in plasma and platelets using the Mirasol pathogen reduction technology system. Transfusion. 2013;53(2):284-90. https://doi.org/10.1111/j.1537-2995.2012.03717.x
Aubry M, Laughhunn A, Santa Maria F, Lanteri MC, Stassinopoulos A, Musso D. Amustaline (S-303) treatment inactivates high levels of Chikungunya virus in red-blood-cell components. Vox Sang. 2018;113(3):232-41. https://doi.org/10.1111/vox.12626
Santé publique France. Chikungunya, dengue et zika - Données de la surveillance renforcée en France métropolitaine en 2022. Accessed 14 October 2022. https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-a-transmission-vectorielle/chikungunya/articles/donnees-en-france-metropolitaine/chikungunya-dengue-et-zika-donnees-de-la-surveillance-renforcee-en-france-metropolitaine-en-2022.
European Centre for Disease Prevention and Control (ECDC). West Nile virus infection. Accessed 14 October 2022. https://www.ecdc.europa.eu/en/west-nile-virus-infection.