Effects of ultrasonic-assisted pH shift treatment on physicochemical properties of electrospinning nanofibers made from rapeseed protein isolates.

Antibacterial activity Electrospinning nanofibers Physicochemical properties Rapeseed protein isolates Ultrasound pH shift

Journal

Ultrasonics sonochemistry
ISSN: 1873-2828
Titre abrégé: Ultrason Sonochem
Pays: Netherlands
ID NLM: 9433356

Informations de publication

Date de publication:
Mar 2023
Historique:
received: 13 12 2022
revised: 12 02 2023
accepted: 13 02 2023
pubmed: 23 2 2023
medline: 22 3 2023
entrez: 22 2 2023
Statut: ppublish

Résumé

Electrospinning nanofibers (NFs) made from natural proteins have drawn increasing attention recently. Rapeseed meal is a by-product that rich in protein but not fully utilized due to poor properties. Therefore, modification of rapeseed protein isolates (RPI) is necessary to expand applications. In this study, pH shift alone or ultrasonic-assisted pH shift treatment was adopted, the solubility of RPI, along with the conductivity and viscosity of the electrospinning solution were detected. Moreover, the microstructure and functional characteristics of the electrospinning NFs, as well as the antibacterial activity of clove essential oil loaded-NFs were investigated. The tested parameters were remarkably improved after different treatments compared with the control, and synergistic effects were observed, especially under alkaline conditions. Hence, pH

Identifiants

pubmed: 36809744
pii: S1350-4177(23)00048-2
doi: 10.1016/j.ultsonch.2023.106336
pmc: PMC9969285
pii:
doi:

Substances chimiques

Clove Oil 0
Anti-Bacterial Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

106336

Informations de copyright

Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Yi-Ming Zhao (YM)

School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China.

Yihe Li (Y)

School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China; College of Grain Engineering, Food & Drug, Jiangsu Vocational College of Finance & Economics, 8 Meicheng East Road, Huaian, Jiangsu, China.

Haile Ma (H)

School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China.

Ronghai He (R)

School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China. Electronic address: heronghai1971@126.com.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation

Classifications MeSH