Iron accumulation and axonal damage of cerebellum in idiopathic cervical dystonia.

Purkinje cells cerebellum cervical dystonia diffusion tensor iron deposition quantitative susceptibility mapping

Journal

European journal of neurology
ISSN: 1468-1331
Titre abrégé: Eur J Neurol
Pays: England
ID NLM: 9506311

Informations de publication

Date de publication:
06 2023
Historique:
revised: 10 02 2023
received: 02 01 2023
accepted: 16 02 2023
medline: 8 5 2023
pubmed: 23 2 2023
entrez: 22 2 2023
Statut: ppublish

Résumé

Postmortem brain study indicated that cerebellar Purkinje cell (PC) loss might be a pathological finding in patients with inherited and idiopathic cervical dystonia (ICD). The analysis of conventional magnetic resonance imaging brain scans failed to yield support for this finding. Previous studies have identified that iron overload can be the consequence of neuron death. The objectives of this study were to investigate iron distribution and demonstrate changes in axons in the cerebellum, providing evidence for PC loss in patients with ICD. Twenty-eight patients with ICD (20 females) and 28 age- and sex-matched healthy controls were recruited. A spatially unbiased infratentorial template was applied to perform cerebellum optimized quantitative susceptibility mapping and diffusion tensor analysis based on magnetic resonance imaging. Voxel-wise analysis was performed to assess cerebellar tissue magnetic susceptibility and fractional anisotropy (FA) alterations, and the clinical relevance of these findings was investigated in the patients with ICD. Increased susceptibility values revealed by quantitative susceptibility mapping in the right lobule CrusI, CrusII, VIIb, VIIIa, VIIIb and IX were found in the patients with ICD. A reduced FA value was found across almost all the cerebellum; an FA value of the significant clusters within the right lobule VIIIa significantly correlated with the motor severity of patients with ICD (r = -0.575, p = 0.002). Our study provided evidence for cerebellar iron overload and axonal damage in patients with ICD, which may indicate PC loss and related axonal changes. These results provide evidence for the neuropathological findings in patients with ICD and further highlight the cerebellar involvement in the pathophysiology of dystonia.

Sections du résumé

BACKGROUND AND PURPOSE
Postmortem brain study indicated that cerebellar Purkinje cell (PC) loss might be a pathological finding in patients with inherited and idiopathic cervical dystonia (ICD). The analysis of conventional magnetic resonance imaging brain scans failed to yield support for this finding. Previous studies have identified that iron overload can be the consequence of neuron death. The objectives of this study were to investigate iron distribution and demonstrate changes in axons in the cerebellum, providing evidence for PC loss in patients with ICD.
METHODS
Twenty-eight patients with ICD (20 females) and 28 age- and sex-matched healthy controls were recruited. A spatially unbiased infratentorial template was applied to perform cerebellum optimized quantitative susceptibility mapping and diffusion tensor analysis based on magnetic resonance imaging. Voxel-wise analysis was performed to assess cerebellar tissue magnetic susceptibility and fractional anisotropy (FA) alterations, and the clinical relevance of these findings was investigated in the patients with ICD.
RESULTS
Increased susceptibility values revealed by quantitative susceptibility mapping in the right lobule CrusI, CrusII, VIIb, VIIIa, VIIIb and IX were found in the patients with ICD. A reduced FA value was found across almost all the cerebellum; an FA value of the significant clusters within the right lobule VIIIa significantly correlated with the motor severity of patients with ICD (r = -0.575, p = 0.002).
CONCLUSIONS
Our study provided evidence for cerebellar iron overload and axonal damage in patients with ICD, which may indicate PC loss and related axonal changes. These results provide evidence for the neuropathological findings in patients with ICD and further highlight the cerebellar involvement in the pathophysiology of dystonia.

Identifiants

pubmed: 36811306
doi: 10.1111/ene.15754
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1619-1630

Informations de copyright

© 2023 European Academy of Neurology.

Références

Williams L, McGovern E, Kimmich O, et al. Epidemiological, clinical and genetic aspects of adult onset isolated focal dystonia in Ireland. Eur J Neurol. 2017;24(1):73-81. doi:10.1111/ene.13133
Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28(7):863-873. doi:10.1002/mds.25475
Simonyan K, Cho H, Hamzehei Sichani A, Rubien-Thomas E, Hallett M. The direct basal ganglia pathway is hyperfunctional in focal dystonia. Brain. 2017;140(12):3179-3190. doi:10.1093/brain/awx263
Sondergaard RE, Rockel CP, Cortese F, et al. Microstructural abnormalities of the dentatorubrothalamic tract in cervical dystonia. Mov Disord. 2021;36:2192-2198. doi:10.1002/mds.28649
Burciu RG, Hess CW, Coombes SA, et al. Functional activity of the sensorimotor cortex and cerebellum relates to cervical dystonia symptoms. Hum Brain Mapp. 2017;38(9):4563-4573. doi:10.1002/hbm.23684
Calderon DP, Fremont R, Kraenzlin F, Khodakhah K. The neural substrates of rapid-onset dystonia-parkinsonism. Nat Neurosci. 2011;14(3):357-365. doi:10.1038/nn.2753
Lin S, Zhang C, Li H, et al. High frequency deep brain stimulation of superior cerebellar peduncles in a patient with cerebral palsy. Tremor Other Hyperkinet Mov (N Y). 2020;10:38. doi:10.5334/tohm.551
Horisawa S, Arai T, Suzuki N, Kawamata T, Taira T. The striking effects of deep cerebellar stimulation on generalized fixed dystonia: case report. J Neurosurg. 2019;1:1-5. doi:10.3171/2018.11.JNS182180
Shin H-W, Youn YC, Hallett M. Focal leg dystonia associated with cerebellar infarction and application of low-frequency cerebellar transcranial magnetic stimulation: evidence of topographically specific cerebellar contribution to dystonia development. Cerebellum (London, England). 2019;18(6):1147-1150. doi:10.1007/s12311-019-01054-0
Prudente CN, Pardo CA, Xiao J, et al. Neuropathology of cervical dystonia. Exp Neurol. 2013;241:95-104. doi:10.1016/j.expneurol.2012.11.019
Dusart I, Flamant F. Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis? Front Neurosci. 2012;6:11. doi:10.3389/fnana.2012.00011
Raike RS, Pizoli CE, Weisz C, van den Maagdenberg AMJM, Jinnah HA, Hess EJ. Limited regional cerebellar dysfunction induces focal dystonia in mice. Neurobiol Dis. 2013;49:200-210. doi:10.1016/j.nbd.2012.07.019
Liu Y, Xing H, Wilkes BJ, et al. The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia. Brain Res Bull. 2020;165:14-22. doi:10.1016/j.brainresbull.2020.09.011
Fremont R, Tewari A, Angueyra C, Khodakhah K. A role for cerebellum in the hereditary dystonia DYT1. Elife. 2017;6:e22775. doi:10.7554/eLife.22775
Fremont R, Calderon DP, Maleki S, Khodakhah K. Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci. 2014;34(35):11723-11732. doi:10.1523/JNEUROSCI.1409-14.2014
Fremont R, Tewari A, Khodakhah K. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of rapid onset dystonia-parkinsonism. Neurobiol Dis. 2015;82:200-212. doi:10.1016/j.nbd.2015.06.004
Hanssen H, Prasuhn J, Heldmann M, et al. Imaging gradual neurodegeneration in a basal ganglia model disease. Ann Neurol. 2019;86(4):517-526. doi:10.1002/ana.25566
Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863-873.
Korzhevskiy DE, Sukhorukova YG, Gusel’nikova VV, Kirik OV, Grigoriyev IP. Intranuclear iron distribution in the Purkinje cells of human cerebellum. Morfologiia. 2015;148(4):49-51.
Gulturk S, Kozan R, Bostanci MO, Sefil F, Bagirici F. Inhibition of neuronal nitric oxide synthase prevents iron-induced cerebellar Purkinje cell loss in the rat. Acta Neurobiol Exp. 2008;68(1):26-31.
Gracien R-M, Petrov F, Hok P, et al. Multimodal quantitative MRI reveals no evidence for tissue pathology in idiopathic cervical dystonia. Front Neurol. 2019;10:914. doi:10.3389/fneur.2019.00914
Simchick G, Liu Z, Nagy T, Xiong M, Zhao Q. Assessment of MR-based R2* and quantitative susceptibility mapping for the quantification of liver iron concentration in a mouse model at 7 T. Magn Reson Med. 2018;80(5):2081-2093. doi:10.1002/mrm.27173
Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage. 2013;65:299-314. doi:10.1016/j.neuroimage.2012.09.055
Betts MJ, Acosta-Cabronero J, Cardenas-Blanco A, Nestor PJ, Düzel E. High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7 T. Neuroimage. 2016;138:43-63. doi:10.1016/j.neuroimage.2016.05.024
Langkammer C, Schweser F, Krebs N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage. 2012;62(3):1593-1599. doi:10.1016/j.neuroimage.2012.05.049
Heuer A, Smith GA, Lelos MJ, Lane EL, Dunnett SB. Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: Motor impairments identify extent of dopamine depletion at three different lesion sites. Behav Brain Res. 2012;228(1):30-43. doi:10.1016/j.bbr.2011.11.027
Preziosa P, Kiljan S, Steenwijk MD, et al. Axonal degeneration as substrate of fractional anisotropy abnormalities in multiple sclerosis cortex. Brain. 2019;142(7):1921-1937. doi:10.1093/brain/awz143
Winston GP. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg. 2012;2(4):254-265. doi:10.3978/j.issn.2223-4292.2012.12.05
Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4(6):469-480.
Balint B, Mencacci NE, Valente EM, et al. Dystonia. Nat Rev Dis Primers. 2018;4(1):25. doi:10.1038/s41572-018-0023-6
Schofield MA, Zhu Y. Fast phase unwrapping algorithm for interferometric applications. Opt Lett. 2003;28(14):1194-1196. doi:10.1364/OL.28.001194
Wu B, Li W, Guidon A, Liu C. Whole brain susceptibility mapping using compressed sensing. Magn Reson Med. 2012;67(1):137-147. doi:10.1002/mrm.23000
Wei H, Dibb R, Zhou Y, et al. Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR Biomed. 2015;28(10):1294-1303. doi:10.1002/nbm.3383
Zivadinov R, Tavazzi E, Bergsland N, et al. Brain iron at quantitative MRI is associated with disability in multiple sclerosis. Radiology. 2018;289(2):487-496. doi:10.1148/radiol.2018180136
Uchida Y, Kan H, Sakurai K, et al. Voxel-based quantitative susceptibility mapping in Parkinson's disease with mild cognitive impairment. Mov Disord. 2019;34(8):1164-1173. doi:10.1002/mds.27717
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143-155. doi:10.1002/hbm.10062
Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310-1320. doi:10.1109/tmi.2010.2046908
Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46(1):39-46. doi:10.1016/j.neuroimage.2009.01.045
Diedrichsen J, Maderwald S, Kuper M, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54(3):1786-1794. doi:10.1016/j.neuroimage.2010.10.035
Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26-41. doi:10.1016/j.media.2007.06.004
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95-113. doi:10.1016/j.neuroimage.2007.07.007
Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ, et al. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease. Brain. 2017;140(1):118-131. doi:10.1093/brain/aww278
Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381-397. doi:10.1016/j.neuroimage.2014.01.060
Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063-1078. doi:10.1016/j.neuroimage.2015.10.019
Guell X, Schmahmann JD, Gabrieli JDE, Ghosh SS. Functional gradients of the cerebellum. Elife. 2018;7:e36652. doi:10.7554/eLife.36652
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045-1060. doi:10.1016/S1474-4422(14)70117-6
Jinnah HA, Neychev V, Hess EJ. The anatomical basis for dystonia: the motor network model. Tremor Other Hyperkinet Mov (N Y). 2017;7:506. doi:10.7916/D8V69X3S
Uchida Y, Kan H, Sakurai K, et al. Magnetic susceptibility associates with dopaminergic deficits and cognition in Parkinson's disease. Mov Disord. 2020;35(8):1396-1405. doi:10.1002/mds.28077
Prudente CN, Stilla R, Singh S, et al. A functional magnetic resonance imaging study of head movements in cervical dystonia. Front Neurol. 2016;7:201.
Cook AA, Fields E, Watt AJ. Losing the beat: contribution of Purkinje cell firing dysfunction to disease, and its reversal. Neuroscience. 2021;462:247-261. doi:10.1016/j.neuroscience.2020.06.008
Fagan M, Scorr L, Bernhardt D, et al. Neuropathology of blepharospasm. Exp Neurol. 2021;346:113855. doi:10.1016/j.expneurol.2021.113855
King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(8):1371-1378. doi:10.1038/s41593-019-0436-x
Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700-712.
Filip P, Gallea C, Lehéricy S, et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord. 2017;32(5):757-768. doi:10.1002/mds.26930
Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432-8444.
Zhang L, Yokoi F, Jin Y-H, et al. Altered dendritic morphology of Purkinje cells in Dyt1 ΔGAG knock-in and Purkinje cell-specific Dyt1 conditional knockout mice. PLoS One. 2011;6(3):e18357. doi:10.1371/journal.pone.0018357
Corp DT, Joutsa J, Darby RR, et al. Network localization of cervical dystonia based on causal brain lesions. Brain. 2019;142(6):1660-1674. doi:10.1093/brain/awz112
Lin S, Wu Y, Li H, et al. Deep brain stimulation of the globus pallidus internus versus the subthalamic nucleus in isolated dystonia. J Neurosurg. 2019;8:1-12. doi:10.3171/2018.12.JNS181927
Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491-1493. doi:10.1038/nn1544
Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19(6):338-350. doi:10.1038/s41583-018-0002-7
Giannì C, Pasqua G, Ferrazzano G, et al. Focal dystonia: functional connectivity changes in cerebellar-basal ganglia-cortical circuit and preserved global functional architecture. Neurology. 2022;98(14):e1499-e1509. doi:10.1212/WNL.0000000000200022
Geminiani A, Mockevičius A, D’Angelo E, Casellato C. Cerebellum involvement in dystonia during associative motor learning: insights from a data-driven spiking network model. Front Syst Neurosci. 2022;16:919761. doi:10.3389/fnsys.2022.919761
Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815-850.
Dusek P, Bahn E, Litwin T, et al. Brain iron accumulation in Wilson disease: a post mortem 7 tesla MRI-histopathological study. Neuropathol Appl Neurobiol. 2017;43(6):514-532. doi:10.1111/nan.12341
Stüber C, Morawski M, Schäfer A, et al. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage. 2014;93(Pt 1):95-106. doi:10.1016/j.neuroimage.2014.02.026
Krebs N, Langkammer C, Goessler W, et al. Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J Trace Elem Med Biol. 2014;28(1):1-7. doi:10.1016/j.jtemb.2013.09.006
Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do's and don’ts of diffusion MRI. Neuroimage. 2013;73:239-254. doi:10.1016/j.neuroimage.2012.06.081
Bédard P, Panyakaew P, Cho H-J, Hallett M, Horovitz SG. Multimodal imaging of essential tremor and dystonic tremor. NeuroImage Clinical. 2022;36:103247. doi:10.1016/j.nicl.2022.103247
Kinoshita M, Hashimoto N, Goto T, et al. Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. Neuroimage. 2008;43(1):29-35. doi:10.1016/j.neuroimage.2008.06.041

Auteurs

Hongxia Li (H)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Ming Zhang (M)

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Yunhao Wu (Y)

Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Yufei Li (Y)

School of Mathematics and Computer Science, Chifeng University, Chifeng, China.

Ruimin Feng (R)

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Xiaohui Shen (X)

Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Yuhan Wang (Y)

Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Xiaoyu Sun (X)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Wenjie Xue (W)

Ban Song Yuan Road Community Health Service Center, Shanghai, China.

Shengdi Chen (S)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Hongjiang Wei (H)

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Yiwen Wu (Y)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH