Mineralogical and chemical characterization of mining waste and utilization for carbon sequestration through mineral carbonation.
Carbon capture and storage
Carbon sequestration
Climate mitigation
Mine waste
Mineral Carbonation
Waste reutilization
Journal
Environmental geochemistry and health
ISSN: 1573-2983
Titre abrégé: Environ Geochem Health
Pays: Netherlands
ID NLM: 8903118
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
16
08
2022
accepted:
10
02
2023
medline:
3
7
2023
pubmed:
23
2
2023
entrez:
22
2
2023
Statut:
ppublish
Résumé
Mining activities have often been associated with the issues of waste generation, while mining is considered a carbon-intensive industry that contributes to the increasing carbon dioxide emission to the atmosphere. This study attempts to evaluate the potential of reusing mining waste as feedstock material for carbon dioxide sequestration through mineral carbonation. Characterization of mining waste was performed for limestone, gold and iron mine waste, which includes physical, mineralogical, chemical and morphological analyses that determine its potential for carbon sequestration. The samples were characterized as having alkaline pH (7.1-8.3) and contain fine particles, which are important to facilitate precipitation of divalent cations. High amount of cations (CaO, MgO and Fe
Identifiants
pubmed: 36811700
doi: 10.1007/s10653-023-01513-y
pii: 10.1007/s10653-023-01513-y
doi:
Substances chimiques
Carbon Dioxide
142M471B3J
Minerals
0
Calcium Carbonate
H0G9379FGK
Carbonates
0
Iron
E1UOL152H7
Gold
7440-57-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4439-4460Subventions
Organisme : Ministry of Higher Education, Malaysia
ID : FRGS/1/2018/TK10/UPM/02/7 (5540081)
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Affandi, F. N. A., Kusin, F. M., Sulong, N. A., & Madzin, Z. (2018). Hydrogeochemical assessment of mine-impacted water and sediment of iron ore mining. IOP Conference Series Earth and Environmental Science, 140, 012–023.
Allahverdi, A., Kani, E. N. (2013). Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements. Handbook of Recycled Concrete and Demolition Waste. 439–475.
Azdarpour, A., Karaei, M. A., Hamidi, H., Mohammadian, E., Honarvar, B. (2018). CO
Azdarpour, A., Asadullah, M., Junin, R., Manan, M., Hamidi, H., & Mohammadian, E. (2014). Direct carbonation of red gypsum to produce solid carbonates. Fuel Processing Technology, 126, 429–434.
Benhelal, E., Rashid, M. I., Rayson, M. S., Prigge, J. D., Molloy, S., Brent, G. F., Cote, A., Stockenhuber, M., & Kennedy, E. M. (2018). Study on mineral carbonation of heat activated lizardite at pilot and laboratory scale. Journal of CO2 Utilization, 26, 230–238.
Bobicki, E. R., Liu, Q., Xu, Z., & Zeng, H. (2012). Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38(2), 302–320.
Bodénan, F., Bourgeois, F., Petiot, C., Augé, T., Bonfils, B., Julcour-Lebigue, C., Guyot, F., Boukary, A., Tremosa, J., Lassin, A., Gaucher, E. C., & Chiquet, P. (2014). Ex situ mineral carbonation for CO
Bonewitz, R. (2012). Rocks and minerals (2nd ed., pp. 1–337). DK Publishing.
BS 1377–3, (1990). Method of Test for Soils for Civil Engineering Purposes—Part 3: Chemical and Electro-Chemical Test. British Standards. London, UK.
BS, (1990). Determination of the Particle Size Distribution of Soil Materials, Clause 9.3: Dry Sieving. London, BS 1377: Part 2:1990, Section 9.3.
De Yoreo, J. J., & Vekilov, P. G. (2003). Principles of crystal nucleation and growth. Reviews in Mineralogy and Geochemistry, 54, 57–93.
Ding, W., Fu, L., Ouyang, J., & Yang, H. (2014). CO
EPA. US Environmental Protection Agency. 2003. EPA and hardrock mining: A source book for industry in the northwest and alaska, appendix C: characterization of ore, waste rock, and tailings; Office of Solid Waste: Washington, DC, USA
Gabrielli, P., Gazzani, M., & Mazzotti, M. (2020). The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO
Han, B., Guo, J., Abrahaley, T., Qin, L., Wang, L., Zheng, Y., Li, B., Liu, D., Yao, H., Yang, J., Li, C., Xi, Z., & Yang, X. (2011). Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization. PLoS ONE, 6(2), e17236. https://doi.org/10.1371/journal.pone.0017236
doi: 10.1371/journal.pone.0017236
Han, D. R., Namkung, H., Lee, H. M., Huh, D. G., & Kim, H. T. (2015). CO
Harrison, A. L., Power, I. M., & Dipple, G. M. (2013). Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environmental Science and Technology, 47, 126–134.
Hasan, S. N. M., Kusin, F. M., Jusop, S., & Yusuff, F. M. (2018). Potential of soil, sludge and sediment for mineral carbonation process in Selinsing Gold Mine Malaysia. Minerals, 8, 257.
Hasan, S. N. M. S., Kusin, F. M., Shamshuddin, J., & Yusuff, F. M. (2019). The mineralogy and chemical properties of sedimentary waste rocks with carbon sequestration potential at Selinsing Gold Mine Pahang. Pertanika Journal Science Technology, 27(2), 1005–1012.
Hills, C. D., Tripathi, N., & Carey, P. J. (2020). Mineralization technology for carbon capture, utilization, and storage. Frontiers in Energy Research, 8, 142.
Hitch, M., Ballantyne, S. M., & Hindle, S. R. (2010). Revaluing mine waste rock for carbon capture and storage. International Journal of Mining, Reclamation and Environment, 24, 64–79.
Huijgen, W. J. J., Comans, R. N. J. (2003). Carbon Dioxide sequestration by mineral carbonation: Literature review, ECN-C--03–016, Energy Research Centre of the Netherlands.
Huijgen, W. J. J., Comans, R. N. J. (2005). Carbon dioxide sequestration by mineral carbonation: Literature review update 2003–2004, ECN-C--05–022, Energy Research Centre of The Netherlands, Petten, The Netherlands.
Jacobs, A. D. (2014). Quantifying the mineral carbonation potential of mine waste mineral: A new parameter for geospatial estimation. PhD Thesis. Faculty of Graduate and Postdoctoral Studies, (Mining Engineering), University of Columbia, Vancouver, 232.
Jacobs, A. D., & Hitch, M. (2011). Experimental mineral carbonation: Approaches to accelerate CO
Joni, I. M., Nulhakim, M., Vanitha, M., & Panatarani, C. (2018). IOP conference series. Journal of Physics: Conference Series, 1080, 012006.
Jorat, M. E., Aziz, M., Marto, A., Zaini, N., Jusoh, S. N., & Manning, D. A. C. (2018). Sequestering atmospheric CO
Kandji, E. H. B., Plante, B., Bussière, B., Beaudoin, G., & Pierre-Philippe, D. (2017). Geochemical behavior of ultramafic waste rocks with carbon sequestration potential: A case study of the Dumont Nickel Project, Amos Québec. Environmental Science and Pollution Research, 24, 11734–11751.
Kemache, N., Pasquier, L. C., Cecchi, E., Mouedhen, I., Blais, J. F., & Mercier, G. (2017). Aqueous mineral carbonation for CO
Kusin, F. M., Syed-Hasan, S. N. M., Hassim, M. A., & Molahid, V. L. M. (2020). Mineral carbonation of sedimentary mine waste for carbon sequestration and potential reutilization as cementitious material. Environmental Science and Pollution Research, 27(11), 12767–12780.
Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), 1153–1170.
Li, J. J., & Hitch, M. (2015). Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation. International Journal of Minerals, Metallurgy and Materials., 22(10), 1005–1016.
Li, J., & Hitch, M. (2017). A Review on integrated mineral carbonation process in ultramafic mine deposit. Geo-Resources Environment and Engineering, 2, 148–154.
Lu, J., Mickler, P. J., & Nicot, J. (2014). Geochemical impact of oxygen impurity on siliciclastic and carbonate reservoir rocks for carbon storage. Energy Procedia, 63, 4782–4798.
Makoundi, C., Zaw, K., Large, R. R., Meffre, S., Chun-Kit, L., & Hoe, T. G. (2014). Geology, geochemistry and metallogenesis of the selinsing gold deposit, Central Malaysia. Gondwana Research, 26, 241–261.
Manning, D. A. C., Renforth, P., Lopez-Capel, E., Robertson, S., & Ghazireh, N. (2013). Carbonate precipitation in artificial soils produced from basaltic quarry fines and composts: An opportunity for passive carbon sequestration. International Journal of Greenhouse Gas Control, 17, 309–317.
Matson, M. L., & Orbaek, A. W. (2013). Chapter 18 living in a materials world: Solid state chemistry in inorganic chemistry for dummies. John Wiley & Sons.
Mendoza, E. Y. M., Santos, A. S., López, E. V., Drozd, V., Durygin, A., Chen, J., & Saxena, S. K. (2019). Iron oxides as efficient sorbents for CO
Milinovic, J., Dias, Á. A., Janeiro, A. I., Pereira, M. F. C., Martins, S., Petersen, S., & Barriga, F. J. A. S. (2020). XRD identification of ore minerals during cruises: Refinement of extraction procedure with sodium acetate buffer. Minerals, 10(160), 1–19.
Mo, L., Zhang, F., Deng, M., Jin, F., Al-Tabbaa, A., & Wang, A. (2017). Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cement and Concrete Composites, 83, 138-e145.
Mohd-Isha, N. S., Kusin, F. M., Kamal, N. M. A., Hasan, S. N. M. S., & Molahid, V. L. M. (2021). Geochemical and mineralogical assessment of sedimentary limestone mine waste and potential for mineral carbonation. Environmental Geochemistry and Health, 43(5), 2065–2080.
Molahid, V. L. M. (2022). The potential of mine waste material for mineral carbonation process in carbon capture and utilization (CCU) application. Master Thesis. Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, 98.
Molahid, V. L. M., Kusin, F. M., Kamal, M. N. A., Hasan, S. N. M. S., Ramli, N. A. A., Abdullah, A. M., & Ashaari, Z. H. A. (2021). Carbon sequestration of limestone mine waste through mineral carbonation and utilization as supplementary cementitious material. International Journal of Integrated Engineering, 13(1), 311–320.
Monument Mining Limited (2016). Selinsing gold mine and buffalo reef project-malaysia. NI 43-101 Technical Report, Snowden, Perth, Australia.
Munsell, (2012). Munsell Soil-Color Charts: With genuine Munsell color chips. 2009 year revised, 2012 production. Grand Rapids, MI: Munsell Color.
Oalkers, E. H., & Cole, D. R. (2008). Carbon dioxide sequestration: A solution to a global problem. Elements, 4, 305–310.
Oates, T. (2010). Lime and limestone. In Kirk-Othmer Encyclopedia of Chemical Technology (p. 671). John Wiley & Sons Inc.
Omale, S. O., Choong, T. S. Y., Abdullah, L. C., Siajam, S. I., & Yip, M. W. (2019). Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Heliyon, 5, e02602.
Osman, K. T. (2013). Physical properties of soil. Soils (principles, properties and management) (pp. 49–65). Springer.
Pan, S.-Y., Chang, E. E., & Chiang, P.-C. (2012). CO
Park, A. H. A., & Fan, L. S. (2004). CO
Pour, A. B., & Hashim, M. (2015). Structural mapping using PALSAR data in the Central Gold Belt Peninsular Malaysia. Ore Geology Reviews, 64, 13–22.
Rahmani, O. (2020). An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO2 sequestration. Journal of CO2 Utilization, 35, 265–271.
Ramli, N. A. A., Kusin, F. M., & Molahid, V. L. M. (2021). Influencing factors of the mineral carbonation process of the iron ore mining waste in sequestering atmospheric carbon dioxide. Sustainability, 13(4), 1866.
Renforth, P., Washbourne, C. L., Taylder, J., & Manning, D. A. C. (2011). Silicate production and availability for mineral carbonation. Environmental Science and Technology, 45, 2035–2041.
Reynes, J. F., Mercier, G., Blais, J. F., & Pasquier, L. C. (2021). Feasibility of a mineral carbonation technique using iron-silicate mining waste by direct flue gas CO
Ruhaimi, A. H., Aziz, M. A. A., & Jalil, A. A. (2021). Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities. Journal of CO2 Utilization, 43, 101357.
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., & Maroto-Valer, M. M. (2014). A Review of mineral carbonation technologies to sequester CO
Sara, K., Javad, G., Alireza, Y., & Hosein, M. (2010). Reserve estimation of the high phosphorous stockpile at the Choghart iron mine of Iran using geostatistical modeling. Mining Science and Technology, 20, 0855–0860.
Sarvaramini, A., Assima, G. P., Beaudoin, G., & Larachi, F. (2014). Biomass torrefaction and CO
Sipilä, J., Teir, S., Zevenhoven, R. (2008). Carbon dioxide sequestration by mineral carbonation literature review update 2005–2007. Available online: https://remineralize.org/wp-content/uploads/2015/10/LITR1.pdf Accessed on June 16, 2018.
Smith, K. S., Hageman, P. L., Ramsey, C. A., Wildeman, T. R., Ranville, J. F. (2006). Reconnaissance sampling and characterization of mine-waste material. In Proceedings of the US Environmental Protection Agency Hard Rock Mining 2006 Conference, Tucson, AZ, USA, 14–16.
Steinour, H. H. (1959). Some effects of carbon dioxide on mortars and concrete-discussion. Journal of the American Concrete Institute, 30, 905–907.
Stopic, S., Dertmann, C., Modolo, G., Kegler, P., Neumeier, S., Kremer, D., Wotruba, H., Etzold, S., Telle, R., Rosani, D., Knops, P., & Friedrich, B. (2018). Synthesis of magnesium carbonate via carbonation under high pressure in an autoclave. Metals, 8, 993.
Syed-Hasan, S. N. M., Kusin, F. M., Daud, N. N. N., Saadon, M. A., Yusuf, F. M., & Ashaari, Z. H. (2021). Characterization of gold mining waste for carbon sequestration and utilization as supplementary cementitious material. Processes, 9(8), 1384.
Teh, C. B. S., & Talib, J. (2006). Particle-size analysis. Soil physics analyses (pp. 1–6). Universiti Putra Malaysia Press.
Teir, S., Eloneva, S., Fogelholm, C. J., & Zevenhoven, R. (2007). Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy, 32(4), 528–539.
Ukwattage, N. L., Ranjith, P. G., & Li, X. (2017). Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Journal of the International Measurement Confederation, 97, 15–22.
USDA, (2022). https://www.nrcs.usda.gov/wps/portal/nrcs/detail/wi/soils/?cid=NRCSEPRD1370419 Accessed on March 1, 2022.
Veetil, S. P., & Hitch, M. (2020). Recent developments and challenges of aqueous mineral carbonation: A review. International Journal of Environmental Science and Technology, 17(10), 4359–4380.
Walker, R. D. (2017). Iron processing. Encyclopedia Britannica. https://www.britannica.com/technology/iron-processing Accessed on October 5, 2020.
Wang, A., Zhong, D., Zhu, H., Guo, L., Jiang, Y., Yang, X., & Xie, R. (2019). Diagentic features of illite in Upper Triassic Chang-7 tight oil sandstones, Ordos Basin. Geosciences Journal, 23, 281–298.
Washbourne, C. L., Lopez-Capel, E., Renforth, P., Ascough, P. L., & Manning, D. A. C. (2015). Rapid removal of atmospheric CO
Yan, H., Zhang, J., Zhao, Y., Liu, R., & Zheng, C. (2015). CO
Yeap, E. B. (1993). Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development. Journal of Southeast Asian Earth Sciences, 8, 329–348.
Yu, J., Han, Y., Li, Y., & Gao, P. (2019). Growth behavior of the magnetite phase in the reduction of hematite via a fluidized bed. International Journal of Minerals, Metallurgy, and Materials, 26, 1231–1238.
Yu, J., Han, Y., Li, Y., Gao, P., & Li, W. (2017). Mechanism and kinetics of the reduction of hematite to magnetite with Co-Co