Wetting behavior during impacting bituminous coal surface for dust suppression droplets of fatty alcohol polyoxyethylene ether.
Coal surface
Droplet impact
Dust control
Dynamic wetting
Spreading coefficient
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
28
04
2022
accepted:
13
02
2023
medline:
24
4
2023
pubmed:
23
2
2023
entrez:
22
2
2023
Statut:
ppublish
Résumé
The wetting behavior of droplets during impacting coal surface widely exists in the dust control process. Understanding the effect of surfactants on the diffusion of water droplets on coal surface is critical. To study the effect of fatty alcohol polyoxyethylene ether (AEO) on the dynamic wetting behavior of droplets on bituminous coal surface, a high-speed camera is used to record the impact process of ultrapure water droplets and three different molecular weight AEO solution droplets. A dynamic evaluation index, dimensionless spreading coefficient ([Formula: see text]), is used to evaluate the dynamic wetting process. The research results show that maximum dimensionless spreading coefficient ([Formula: see text]) of AEO-3, AEO-6, and AEO-9 droplets is greater than that of ultrapure water droplets. With the increase of impact velocity, the [Formula: see text] increases, but the required time decreases. Moderately increasing the impact velocity is conducive to promoting the spreading of droplets on the coal surface. Below the critical micelle concentration (CMC), the concentration of AEO droplets is positively correlated with the [Formula: see text] and the required time. When the polymerization degree increases, the Reynolds number ([Formula: see text]) and Weber number ([Formula: see text]) of droplets decrease, and the [Formula: see text] decreases. AEO can effectively enhance the spreading of droplets on the coal surface, but the increase in polymerization degree can inhibit this process. Viscous force hinders droplet spreading during droplet interaction with the coal surface, and surface tension promotes droplet retraction. Under the experimental conditions of this paper ([Formula: see text], [Formula: see text]), there is a power exponential relationship between [Formula: see text] and [Formula: see text].
Identifiants
pubmed: 36813941
doi: 10.1007/s11356-023-25991-w
pii: 10.1007/s11356-023-25991-w
doi:
Substances chimiques
Coal
0
Dust
0
Fatty Alcohols
0
Polyethylene Glycols
3WJQ0SDW1A
Water
059QF0KO0R
Ethers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
51816-51829Subventions
Organisme : Scientific research project of Education Department of Liaoning Province
ID : LJ2020JCL008
Organisme : Research Grant of Key Laboratory of Mine Thermodynamic Disasters and Control, Ministry of Education, Liaoning Technical University
ID : JSK202104
Organisme : National Natural Science Foundation of China
ID : 51604143
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Brodny J, Tutak M (2018) Exposure to harmful dusts on fully powered longwall coal mines in Poland. Int J Environ Res Public Health 15(9):1846. https://doi.org/10.3390/ijerph15091846
doi: 10.3390/ijerph15091846
Clanet C, Béguin C, Richard D, Quéré D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208. https://doi.org/10.1017/S0022112004000904
doi: 10.1017/S0022112004000904
Chang P, Zhao ZD, Xu G, Ghosh A, Huang JX, Yang T (2020) Evaluation of the coal dust suppression efficiency of different surfactants: a factorial experiment. Colloids Surf A: Physicochem Eng Asp 595:124686. https://doi.org/10.1016/j.colsurfa.2020.124686
Fan L, Liu SM (2021) Respirable nano-particulate generations and their pathogenesis in mining workplaces: a review. Intl J Coal Sci Technol 8(2):179–198. https://doi.org/10.1007/s40789-021-00412-wIJCST
doi: 10.1007/s40789-021-00412-wIJCST
Fan T, Zhou G, Wang JY (2018) Preparation and characterization of a wetting-agglomeration- based hybrid coal dust suppressant. Process Saf Environ Prot 113:282–291. https://doi.org/10.1016/j.psep.2017.10.023
doi: 10.1016/j.psep.2017.10.023
Finkelman RB, Tian L (2018) The health impacts of coal use in China. Int Geol Rev 60(5–6):579–589. https://doi.org/10.1080/00206814.2017.1335624
doi: 10.1080/00206814.2017.1335624
Jiang JH, Wang PF, Pei Y, Liu RH, Liu LM, He YC (2021) Preparation and performance analysis of a coking coal dust suppressant spray. Intl J Coal Sci Technol 8(5):1003–1014. https://doi.org/10.1007/s40789-021-00406-8
doi: 10.1007/s40789-021-00406-8
Li QZ, Lin BQ, Zhao S, Dai HM (2013) Surface physical properties and its effects on the wetting behaviors of respirable coal mine dust. Powder Technol 233:137–145. https://doi.org/10.1016/j.powtec.2012.08.023
doi: 10.1016/j.powtec.2012.08.023
Li JL, Zhou FB, Liu H (2016) The selection and application of a compound wetting agent to the coal seam water infusion for dust control. Int J Coal Prep Util 36(4):192–206. https://doi.org/10.1080/19392699.2015.1088529
doi: 10.1080/19392699.2015.1088529
Li QZ, Yuan CC, Tao QL, Zheng YN, Zhao Y (2018) Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors. Fuel 215:417–428. https://doi.org/10.1016/j.fuel.2017.11.093
doi: 10.1016/j.fuel.2017.11.093
Li SG, Zhao B, Lin HF, Shuang HQ, Kong XG, Erhao Y (2021) Review and prospects of surfactant-enhanced spray dust suppression: mechanisms and effectiveness. Process Saf Environ Prot 154:410–424. https://doi.org/10.1016/j.psep.2021.08.037
doi: 10.1016/j.psep.2021.08.037
Liu A, Liu SM, Liu P, Wang K (2021a) Water sorption on coal: effects of oxygen-containing function groups and pore structure. Intl J Coal Sci Technol 8(5):983–1002. https://doi.org/10.1007/s40789-021-00424-6IJCST
doi: 10.1007/s40789-021-00424-6IJCST
Liu YT, Li HM, Gao MZ, Ye SQ, Zhao Y, Xie J, Liu GK, Liu JJ, Li LM, Deng J, Zhou WQ (2021b) Experimental and molecular dynamics study into the surfactant effect upon coal wettability. RSC Advances 11(40):24543–24555. https://doi.org/10.1039/D1RA01882E
doi: 10.1039/D1RA01882E
Liu JG, Wang S, Jin LZ, Wang TY, Zhou ZH, Xu JG (2021c) Water-retaining properties of NCZ composite dust suppressant and its wetting ability to hydrophobic coal dust. Intl J Coal Sci Technol 8(2):240–247. https://doi.org/10.1007/s40789-020-00385-2
doi: 10.1007/s40789-020-00385-2
Michel JC, Riviere LM, Bellon-Fontaine MN (2001) Measurement of the wettability of organic materials in relation to water content by the capillary rise method. Eur J Soil Sci 52(3):459–467. https://doi.org/10.1046/j.1365-2389.2001.00392.x
doi: 10.1046/j.1365-2389.2001.00392.x
Peng HT, Nie W, Cai P, Liu Q, Liu ZQ, Yang SB (2019) Development of a novel wind-assisted centralized spraying dedusting device for dust suppression in a fully mechanized mining face. Environ Sci Pollut Res 26(4):3292–3307. https://doi.org/10.1007/s11356-018-3264-8
doi: 10.1007/s11356-018-3264-8
Savitskyi DP (2015) Impact of the pH on angles of contact of water wettability of brown coal. J Water Chem Technol 37(4):155–160. https://doi.org/10.3103/S1063455X15040013
doi: 10.3103/S1063455X15040013
Shekarian Y, Rahimi E, Shekarian N, Rezaee M, Pedram R (2021) An analysis of contributing mining factors in coal workers’ pneumoconiosis prevalence in the United States coal mines, 1986–2018. Intl J Coal Sci Technol 8(6):1227–1237. https://doi.org/10.1007/s40789-021-00464-y
doi: 10.1007/s40789-021-00464-y
Shi GQ, Qi JM, Wang YM, Sheng HY (2021) Synergistic influence of noncationic surfactants on the wettability and functional groups of coal. Powder Technol 385:92–105. https://doi.org/10.1016/j.powtec.2021.02.056
doi: 10.1016/j.powtec.2021.02.056
Sun J, Zhou G, Wang CM, Liu RL, Miao YN (2021) Experimental synthesis and performance comparison analysis of high-efficiency wetting enhancers for coal seam water injection. Process Saf Environ Protect 147:320–333. https://doi.org/10.1016/j.psep.2020.09.036
doi: 10.1016/j.psep.2020.09.036
Susana L, Campaci F, Santomaso AC (2012) Wettability of mineral and metallic powders: applicability and limitations of sessile drop method and Washburn’s technique. Powder Technol 226:68–77. https://doi.org/10.1016/j.powtec.2012.04.016
doi: 10.1016/j.powtec.2012.04.016
Wang HT, Zhang L, Wang DM, He XX (2017) Experimental investigation on the wettability of respirable coal dust based on infrared spectroscopy and contact angle analysis. Adv Powder Technol 28(12):3130–3139. https://doi.org/10.1016/j.apt.2017.09.018
doi: 10.1016/j.apt.2017.09.018
Wang PF, Tan XH, Zhang LY, Li YJ, Liu RH (2019a) Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying. Process Saf Environ Prot 132:189–199. https://doi.org/10.1016/j.psep.2019.09.031
doi: 10.1016/j.psep.2019.09.031
Wang XN, Yuan SJ, Jiang BY (2019b) Wetting process and adsorption mechanism of surfactant solutions on coal dust surface. J Chem 2019b:9085310. https://doi.org/10.1155/2019/9085310
Wang K, Ding CN, Jiang SG, Wu ZY, H S, Zhang WQ (2019c) Application of the addition of ionic liquids using a complex wetting agent to enhance dust control efficiency during coal mining. Process Saf Environ Protect 122:13-22. https://doi.org/10.1016/j.psep.2018.11.011
Wang PF, Han H, Tian C, Liu RH, Jiang YD (2020a) Experimental study on dust reduction via spraying using surfactant solution. Atmos Pollut Res 11(6):32–42. https://doi.org/10.1016/j.apr.2020.02.010
doi: 10.1016/j.apr.2020.02.010
Wang PF, Jiang YD, Liu RH, Liu LM, He YC (2020b) Experimental study on the improvement of wetting performance of OP-10 solution by inorganic salt additives. Atmos Pollut Res 11(6):153–161. https://doi.org/10.1016/j.apr.2020.02.023
doi: 10.1016/j.apr.2020.02.023
Wei JP, Jiang W, Si LL, Xu XY, Wen ZH (2022) Experimental study of wetting effect of surfactant based on dynamic wetting process and impedance response of coal. Environ Sci Pollut Res 2022:1–15. https://doi.org/10.1007/s11356-022-22531-w
doi: 10.1007/s11356-022-22531-w
Xu G, Chen YP, Eksteen J, Xu JL (2018) Surfactant-aided coal dust suppression: a review of evaluation methods and influencing factors. Sci Total Environ 639:1060–1076. https://doi.org/10.1016/j.scitotenv.2018.05.182
doi: 10.1016/j.scitotenv.2018.05.182
Xu CH, Wang DM, Wang HT, Ma LY, Zhu XL, Zhu YF, Zhang Y, Liu FM (2019) Experimental investigation of coal dust wetting ability of anionic surfactants with different structures. Process Saf Environ Prot 121:69–76. https://doi.org/10.1016/j.psep.2018.10.010
Xiu ZH, Nie W, Yan JY, Chen DW, Cai P, Liu Q, Du T, Yang B (2020) Numerical simulation study on dust pollution characteristics and optimal dust control air flow rates during coal mine production. J Clean Prod 248:119197. https://doi.org/10.1016/j.jclepro.2019.119197
Yao QG, Xu CC, Zhang YS, Zhou G, Zhang SC, Wang D (2017) Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants. Process Saf Environ Prot 111:726–732. https://doi.org/10.1016/j.psep.2017.08.037
You XF, He M, Cao XQ, Wang P, Wang JX, Li L (2019) Molecular dynamics simulations of removal of nonylphenol pollutants by graphene oxide: experimental study and modelling. Appl Surf Sci 475:621–626. https://doi.org/10.1016/j.apsusc.2019.01.006
doi: 10.1016/j.apsusc.2019.01.006
Yuan L (2020a). Scientific conception of coal mine dust control and occupational safety. J China Coal Soc 45(01):1–7. https://doi.org/10.13225/j.cnki.jccs.YG19.1790
Yuan MY, Nie W, Zhou WW, Yan JY, Bao Q, Guo CJ, Tong P, Zhang HH, Guo L (2020) Determining the effect of the non-ionic surfactant AEO9 on lignite adsorption and wetting via molecular dynamics (MD) simulation and experiment comparisons. Fuel 278:118339. https://doi.org/10.1016/j.fuel.2020.118339
doi: 10.1016/j.fuel.2020.118339
Zhang Z, Zhang ST (2022) A new method of coal fine particles humidification and agglomeration: synergistic dust suppression with composition of soap solution. Process Saf Environ Prot 159:146–156. https://doi.org/10.1016/j.psep.2021.12.059
doi: 10.1016/j.psep.2021.12.059
Zhang Q, Zhou G, Qian XM, Yuan MQ, Sun YL, Wang D (2018) Diffuse pollution characteristics of respirable dust in fully mechanized mining face under various velocities based on CFD investigation. J Clean Prod 184:239–250. https://doi.org/10.1016/j.jclepro.2018.02.230
doi: 10.1016/j.jclepro.2018.02.230
Zhang KX, Zhang J, Wei JP, Ren T, Xu XY (2019) Coal seam water infusion for dust control: a technical review. Environ Sci Pollut Res 26(5):4537–4554. https://doi.org/10.1007/s11356-018-04086-x
doi: 10.1007/s11356-018-04086-x
Zhang Q, Chen XY, Wang HT, Xu CH (2021) Exploration on molecular dynamics simulation methods of microscopic wetting process for coal dust. Intl J Coal Sci Technol 8(2):205–216. https://doi.org/10.1007/s40789-021-00415-7
doi: 10.1007/s40789-021-00415-7
Zhou L, Yang SY, Hu B, Yuan ZL, Wu H, Yang LJ (2018) Evaluating of the performance of a composite wetting dust suppressant on lignite dust. Powder Technol 339:882–893. https://doi.org/10.1016/j.powtec.2018.08.081
doi: 10.1016/j.powtec.2018.08.081
Zhou G, Qiu H, Zhang Q, Xu M, Wang J, Wang JY, Wang G (2016) Experimental investigation of coal dust wettability based on surface contact angle. J Chem 2016. https://doi.org/10.1155/2016/9452303
Zhou Q, Xu G, Chen YP, Qin BT, Zhao ZD, Guo CW (2020) The development of an optimized evaluation system for improving coal dust suppression efficiency using aqueous solution sprays. Coll Surf A: Physicochem Eng Asp 602:125104. https://doi.org/10.1016/j.colsurfa.2020.125104
doi: 10.1016/j.colsurfa.2020.125104
Zhou G, Meng QZ, Xing ZY, Li SL, Xing MY, Xu CC, Dong XS, Xu YX (2022) Research on the wetting mechanism of coal dust by different surfactants: combination of experimental characterization and molecular dynamics simulation. Environ Sci Pollut Res 2022:1–14. https://doi.org/10.1007/s11356-022-20991-8
doi: 10.1007/s11356-022-20991-8