Range expansions of sexual versus asexual organisms: Effects of reproductive assurance and migration load.
gene flow
local adaptation
mating system
migration load
reproductive assurance
species' range
Journal
Journal of evolutionary biology
ISSN: 1420-9101
Titre abrégé: J Evol Biol
Pays: Switzerland
ID NLM: 8809954
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
25
03
2022
accepted:
06
01
2023
medline:
4
4
2023
pubmed:
1
3
2023
entrez:
28
2
2023
Statut:
ppublish
Résumé
It is generally considered that sexual organisms show faster evolutionary adaptation than asexual organisms because sexuals can accumulate adaptive mutations through recombination. Yet, empirical evidence often shows that the geographic range size of sexual species is narrower than that of closely related asexual species, which may seem as if asexuals can adapt to more varied environments. Two potential explanations for this apparent contradiction considered by the existing theory are reproduction assurance and migration load. Here, we consider both reproductive assurance and migration load within a single model to comparatively examine their effects on range expansions of sexuals and asexuals across an environmental gradient. The model shows that higher dispersal propensity decreases sexuals' disadvantage in reproductive assurance while increasing their disadvantage in migration load. Moreover, lower mutation rate constrains adaptation more strongly in asexuals than in sexuals. Thus, high dispersal propensity and high mutation rates promote that asexuals have wider range sizes than sexuals. Intriguingly, our model reveals that sexuals can have wider geographic range sizes than asexuals under low dispersal propensity and low mutation rates, a pattern consistent with a few exceptional empirical cases. Combining reproductive assurance and migration load provides a useful perspective to better understand the relationships between species' mating systems and their geographic ranges.
Banques de données
Dryad
['10.5061/dryad.59zw3r2c8']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
698-708Informations de copyright
© 2023 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
Références
Bayer, R. J. (1991). Allozymic and morphological variation in Antennaria (Asteraceae: Inuleae) from the low arctic of northwestern North America. Systematic Botany, 16, 492-506.
Bell, G. (1982). The paradox of sexuality. The masterpiece of nature: The evolution and genetics of sexuality.
Bridle, J. R., Kawata, M., & Butlin, R. K. (2019). Local adaptation stops where ecological gradients steepen or are interrupted. Evolutionary Applications, 12(7), 1449-1462.
Burt, A. (2000). Perspective: Sex, recombination, and the efficacy of selection-Was Weismann right? Evolution, 54(2), 337-351.
Case, T. J., & Taper, M. L. (2000). Interspecific competition, environmental gradients, gene flow, and the coevolution of species' borders. The american naturalist, 155(5), 583-605.
Connell, J. H. (1980). Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 35, 131-138.
Connor, E. F., & Simberloff, D. (1979). The assembly of species communities: Chance or competition? Ecology, 60(6), 1132-1140.
Cuellar, O. (1977). Animal parthenogenesis: A new evolutionary-ecological model is needed. Science, 197(4306), 837-843.
Doorn, G. S. V., Noest, A. J., & Hogeweg, P. (1998). Sympatric speciation and extinction driven by environment dependent sexual selection. Proceedings of the Royal Society of London, B265, 1915-1919.
Eckert, C. G. (2002). The loss of sex in clonal plants. In J. F. Stuefer, B. Erschbamer, H. Huber, J.-I. Suzuki (Eds.), Ecology and evolutionary biology of clonal plants (pp. 279-298). Springer.
Encinas-Viso, F., Young, A. G., & Pannell, J. R. (2020). The loss of self-incompatibility in a range expansion. Journal of Evolutionary Biology, 33(9), 1235-1244.
Fischer, M., Van Kleunen, M., & Schmid, B. (2000). Genetic Allee effects on performance, plasticity and developmental stability in a clonal plant. Ecology Letters, 3(6), 530-539.
Fisher, R. A. (1930). The genetical theory of natural selection. Clarendon Press.
Fouqueau, L., & Roze, D. (2021). The evolution of sex along an environmental gradient. Evolution, 75(6), 1334-1347.
Gerritsen, J. (1980). Sex and parthenogenesis in sparse populations. The American Naturalist, 115(5), 718-742.
Ghiselin, M. T. (1974). The economy of nature and the evolution of sex. University of California Press.
Glesener, R. R., & Tilman, D. (1978). Sexuality and the components of environmental uncertainty: Clues from geographic parthenogenesis in terrestrial animals. The American Naturalist, 112(986), 659-673.
Grant, A. G., & Kalisz, S. (2020). Do selfing species have greater niche breadth? Support from ecological niche modeling. Evolution, 74(1), 73-88.
Guzmán, N. V., Lanteri, A. A., & Confalonieri, V. A. (2012). Colonization ability of two invasive weevils with different reproductive modes. Evolutionary Ecology, 26(6), 1371-1390.
Haag, C. R., & Ebert, D. (2004). A new hypothesis to explain geographic parthenogenesis. Annales Zoologici Fennici, 41, 539-544.
Hamilton, W. D. (1980). Sex versus non-sex versus parasite. Oikos, 35, 282-290.
Hamilton, W. D., Axelrod, R., & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences of the United States of America, 87(9), 3566-3573.
Hill, W. G., & Robertson, A. (1966). The effect of linkage on limits to artificial selection. Genetics Research, 8(3), 269-294.
Hörandl, E. (2006). The complex causality of geographical parthenogenesis. New Phytologist, 171(3), 525-538.
Hörandl, E. (2009). Geographical parthenogenesis: Opportunities for asexuality. In I. Schön, K. Martens, P. Dijk (Eds.), Lost sex (pp. 161-186). Springer.
Hu, X. S., Zhang, X. X., Zhou, W., Hu, Y., Wang, X., & Chen, X. Y. (2019). Mating system shifts a species' range. Evolution, 73(2), 158-174.
Johnson, S. G., Lively, C. M., & Schrag, S. J. (1995). Evolution and ecological correlates of uniparental reproduction in freshwater snails. Experientia, 51(5), 498-509.
Kilsdonk, L. J., & De Meester, L. (2021). Transient eco-evolutionary dynamics and the window of opportunity for establishment of immigrants. The American Naturalist, 198(4), E95-E110.
Kirkpatrick, M., & Barton, N. H. (1997). Evolution of a species' range. The American Naturalist, 150(1), 1-23.
Kottler, E. J., Dickman, E. E., Sexton, J. P., Emery, N. C., & Franks, S. J. (2021). Draining the swamping hypothesis: Little evidence that gene flow reduces fitness at range edges. Trends in Ecology & Evolution, 36(6), 533-544.
Lambrinos, J. G. (2001). The expansion history of a sexual and asexual species of Cortaderia in California, USA. Journal of Ecology, 89, 88-98.
Lehtonen, J., Jennions, M. D., & Kokko, H. (2012). The many costs of sex. Trends in Ecology & Evolution, 27(3), 172-178.
Liebherr, J. K. (1988). Gene flow in ground beetles (Coleoptera: Carabidae) of differing habitat preference and flight-wing development. Evolution, 42(1), 129-137.
Lundmark, M., & Saura, A. (2006). Asexuality alone does not explain the success of clonal forms in insects with geographical parthenogenesis. Hereditas, 143(2006), 23-32.
Luque, G. M., Vayssade, C., Facon, B., Guillemaud, T., Courchamp, F., & Fauvergue, X. (2016). The genetic Allee effect: A unified framework for the genetics and demography of small populations. Ecosphere, 7(7), e01413.
Mezhzherin, S. V., Chayka, Y. Y., Vlasenko, R. P., Zhalay, E. I., Rostovskaya, O. V., & Harbar, O. V. (2021). The alternative distribution of related earthworms Aporrectodea caliginosa and A. trapezoides (Oligochaeta, Lumbricidae) in Ukraine as a case of geographical parthenogenesis. Zoodiversity, 55(3), 185-194.
Muller, H. J. (1932). Some genetic aspects of sex. The American Naturalist, 66(703), 118-138.
Neher, R. A., Shraiman, B. I., & Fisher, D. S. (2010). Rate of adaptation in large sexual populations. Genetics, 184(2), 467-481.
Noest, A. J. (1997). Instability of the sexual continuum. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1386), 1389-1393.
Otto, S. P. (2009). The evolutionary enigma of sex. The American Naturalist, 174(S1), S1-S14.
Otto, S. P., & Lenormand, T. (2002). Resolving the paradox of sex and recombination. Nature Reviews Genetics, 3(4), 252-261.
Peck, J. R., Yearsley, J. M., & Waxman, D. (1998). Explaining the geographic distributions of sexual and asexual populations. Nature, 391(6670), 889-892.
Piquot, Y., Saumitou-Laprade, P., Petit, D., Vernet, P., & Epplen, J. T. (1996). Genotypic diversity revealed by allozymes and oligonucleotide DNA fingerprinting in French populations of the aquatic macrophyte Sparganium erectum. Molecular Ecology, 5(2), 251-258.
Rafajlović, M., Kleinhans, D., Gulliksson, C., Fries, J., Johansson, D., Ardehed, A., Sundqvist, L., Pereyra, R. T., Mehlig, B., Jonsson, P. R., & Johannesson, K. (2017). Neutral processes forming large clones during colonization of new areas. Journal of Evolutionary Biology, 30(8), 1544-1560.
Rice, W. R. (2002). Experimental tests of the adaptive significance of sexual recombination. Nature Reviews Genetics, 3(4), 241-251.
Richards, A. J. (2003). Apomixis in flowering plants: An overview. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1434), 1085-1093.
Salathé, M., Salathé, R., Schmid-Hempel, P., & Bonhoeffer, S. (2006). Mutation accumulation in space and the maintenance of sexual reproduction. Ecology Letters, 9(8), 941-946.
Sandoval, C. P. (1994). The effects of the relative geographic scales of gene flow and selection on morph frequencies in the walking-stick Timema cristinae. Evolution, 48(6), 1866-1879.
Scheu, S., & Drossel, B. (2007). Sexual reproduction prevails in a world of structured resources in short supply. Proceedings of the Royal Society B: Biological Sciences, 274(1614), 1225-1231.
Sniegowski, P. D., Gerrish, P. J., Johnson, T., & Shaver, A. (2000). The evolution of mutation rates: Separating causes from consequences. BioEssays, 22(12), 1057-1066.
Song, Y., Drossel, B., & Scheu, S. (2011). Tangled Bank dismissed too early. Oikos, 120(11), 1601-1607.
Song, Y., Scheu, S., & Drossel, B. (2011). Geographic parthenogenesis in a consumer-resource model for sexual reproduction. Journal of Theoretical Biology, 273(1), 55-62.
Soreng, R. J., & Van Devender, T. R. (1989). Late quaternary fossils of Poa fendleriana (muttongrass): Holocene expansions of apomicts. The Southwestern Naturalist, 34, 35-45.
Strong, D. R., Jr., Szyska, L. A., & Simberloff, D. S. (1979). Test of community-wide character displacement against null hypotheses. Evolution, 33, 897-913.
Tilquin, A., & Kokko, H. (2016). What does the geography of parthenogenesis teach us about sex? Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1706), 20150538.
Van Valen, L. (1973). A new evolutionary law. Evolution Theory, 1, 1-30.
Vandel, A. (1928). La parthénogenese geographique. Contribution a l'étude biologique et cytologique de la parthénogenese naturelle. Bulletin Biologique de la France et de la Belgique, 62, 164-182.
Vanhoenacker, E., Sandell, L., & Roze, D. (2018). Stabilizing selection, mutational bias, and the evolution of sex. Evolution, 72(9), 1740-1758.
Vanoverbeke, J., Urban, M. C., & De Meester, L. (2016). Community assembly is a race between immigration and adaptation: Eco-evolutionary interactions across spatial scales. Ecography, 39(9), 858-870.
Yahara, T. (1990). Evolution of agamospermous races in Boehmeria and eupatorium. Plant Species Biology, 5(1), 183-196.
Yamamichi, M., & Koizumi, I. (2020). Toxic males: Density-dependent male mating harassment can explain geographic parthenogenesis. Ecological Research, 35(2), 281-288.