PpyMYB144 transcriptionally regulates pear fruit skin russeting by activating the cytochrome P450 gene PpyCYP86B1.


Journal

Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576

Informations de publication

Date de publication:
01 Mar 2023
Historique:
received: 17 08 2022
accepted: 20 02 2023
entrez: 1 3 2023
pubmed: 2 3 2023
medline: 3 3 2023
Statut: epublish

Résumé

PpyMYB144 directly activates the promoter of PpyCYP86B1, promotes the synthesis of α, ω-diacids, and involves in pear fruit skin russeting. Russeting is an economically important surface disorder in pear (Pyrus pyrifolia) fruit. Previous research has demonstrated that suberin is the pivotal chemical component contributing to pear fruit skin russeting, and fruit bagging treatment effectively reduces the amount of suberin of fruits, and thereby reduces the russeting phenotype. However, the mechanisms of pear fruit skin russeting remain largely unclear, particularly the transcriptional regulation. Here, we dissected suberin concentration and composition of pear fruits along fruit development and confirmed that α, ω-diacids are the predominant constituents in russeted pear fruit skins. Two cytochrome P450 monooxygenase (CYP) family genes (PpyCYP86A1 and PpyCYP86B1) and nine MYB genes were isolated from pear fruit. Expressions of PpyCYP86A1, PpyCYP86B1, and five MYB genes (PpyMYB34, PpyMYB138, PpyMYB138-like, PpyMYB139, and PpyMYB144) were up-regulated during fruit russeting and showed significant correlations with the changes of α, ω-diacids. In addition, dual-luciferase assays indicated that PpyMYB144 could trans-activate the promoter of PpyCYP86B1, and the activation was abolished by motif mutagenesis of AC element on the PpyCYP86B1 promoter. Further, Agrobacterium-mediated transient expression of PpyCYP86B1 and PpyMYB144 in pear fruits induced the deposition of aliphatic suberin. Thus, PpyMYB144 is a novel direct activator of PpyCYP86B1 and contributes to pear fruit skin russeting.

Identifiants

pubmed: 36854938
doi: 10.1007/s00425-023-04102-6
pii: 10.1007/s00425-023-04102-6
doi:

Substances chimiques

Cytochrome P-450 Enzyme System 9035-51-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

69

Subventions

Organisme : National Natural Science Foundation of China
ID : 32202445
Organisme : Jiangsu Provincial Key Research and Development Program
ID : BE2022381
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20190896

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19(1):351–368. https://doi.org/10.1105/tpc.106.048033
doi: 10.1105/tpc.106.048033 pubmed: 17259262 pmcid: 1820950
Cohen H, Dong Y, Szymanski J, Lashbrooke J, Meir S, Almekias-Siegl E, Zeisler-Diehl VV, Schreiber L, Aharoni AA (2019) Multilevel study of melon fruit reticulation provides insight into skin ligno-suberization hallmarks. Plant Physiol 179(4):1486–1501. https://doi.org/10.1104/pp.18.01158
doi: 10.1104/pp.18.01158 pubmed: 30700539 pmcid: 6446765
Cohen H, Fedyuk V, Wang C, Wu S, Aharoni A (2020) SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J 102(3):431–447. https://doi.org/10.1111/tpj.14711
doi: 10.1111/tpj.14711 pubmed: 32027440
Cohen H, Szymanski J, Aharoni A, Dominguez E (2017) Assimilation of “omics” strategies to study the cuticle layer and suberin lamellae in plants. J Exp Bot 68(19):5389–5400. https://doi.org/10.1093/jxb/erx348
doi: 10.1093/jxb/erx348 pubmed: 29040673
Compagnon V, Diehl P, Benveniste IN, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F (2009) CYP86B1 is required for very long chain ω-hydroxyacid and α, ω-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol 150(4):1831–1843. https://doi.org/10.1104/pp.109.141408
doi: 10.1104/pp.109.141408 pubmed: 19525321 pmcid: 2719127
Figueiredo R, Portilla Llerena JP, Kiyota E, Ferreira SS, Cardeli BR, de Souza SCR, Dos Santos BM, Sodek L, Cesarino I, Mazzafera P (2020) The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana. Plant Mol Biol 104(4–5):411–427. https://doi.org/10.1007/s11103-020-01048-1
doi: 10.1007/s11103-020-01048-1 pubmed: 32813231
Franke R, Schreiber L (2007) Suberin—a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259. https://doi.org/10.1016/j.pbi.2007.04.004
doi: 10.1016/j.pbi.2007.04.004 pubmed: 17434790
Gou M, Hou G, Yang H, Zhang X, Cai Y, Kai G, Liu CJ (2017) The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiol 173(2):1045–1058. https://doi.org/10.1104/pp.16.01614
doi: 10.1104/pp.16.01614 pubmed: 27965303
Graça J (2009) Hydroxycinnamates in suberin formation. Phytochemistry Rev 9(1):85–91. https://doi.org/10.1007/s11101-009-9138-4
doi: 10.1007/s11101-009-9138-4
Gamble J, Jaeger SR, Harker FR (2006) Preferences in pear appearance and response to novelty among Australian and New Zealand consumers. Postharvest Biol Technol 41:38–47. https://doi.org/10.1016/j.postharvbio.2006.01.019
doi: 10.1016/j.postharvbio.2006.01.019
Han XY, Wei XP, Lu WJ, Wu Q, Mao L, Luo ZS (2022) Transcriptional regulation of KCS gene by bZIP29 and MYB70 transcription factors during ABA-stimulated wound suberization of kiwifruit (Actinidia deliciosa). BMC Plant Biol 22(1):23. https://doi.org/10.1186/s12870-021-03407-6
doi: 10.1186/s12870-021-03407-6 pubmed: 34998386 pmcid: 8742354
Heng W, Huang H, Li F, Hou Z, Zhu L (2017) Comparative analysis of the structure, suberin and wax composition and key gene expression in the epidermis of ‘Dangshansuli’ pear and its russet mutant. Acta Physiol Plant 39(7):150. https://doi.org/10.1007/s11738-017-2443-4
doi: 10.1007/s11738-017-2443-4
Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59(9):2347–2360. https://doi.org/10.1093/jxb/ern101
doi: 10.1093/jxb/ern101 pubmed: 18544608 pmcid: 2423664
Jiang S, Luo J, Wang XQ, An HS, Zhang JY, Li SG (2022) QTL mapping and transcriptome analysis to identify genes associated with green/russet peel in Pyrus pyrifolia. Sci Hortic 293:110714. https://doi.org/10.1016/j.scienta.2021.110714
doi: 10.1016/j.scienta.2021.110714
Kandel S, Sauveplane V, Compagnon V, Franke R, Millet Y, Schreiber L, Werck-Reichhart D, Pinot F (2007) Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of Arabidopsis thaliana catalyzing dicarboxylic fatty acid formation in vitro. FEBS J 274(19):5116–5127. https://doi.org/10.1111/j.1742-4658.2007.06032.x
doi: 10.1111/j.1742-4658.2007.06032.x pubmed: 17868380
Khanal BP, Grimm E, Knoche M (2013) Russeting in apple and pear: a plastic periderm replaces a stiff cuticle. AoB Plants 5:pls048. https://doi.org/10.1093/aobpla/pls048
doi: 10.1093/aobpla/pls048 pubmed: 23350024
Khanal BP, Ikigu GM, Knoche M (2019) Russeting partially restores apple skin permeability to water vapour. Planta 249(3):849–860. https://doi.org/10.1007/s00425-018-3044-1
doi: 10.1007/s00425-018-3044-1 pubmed: 30448863
Khanal BP, Le TL, Si Y, Knoche M (2020) Russet susceptibility in apple is associated with skin cells that are larger, more variable in size, and of reduced fracture strain. Plants 9:1118. https://doi.org/10.3390/plants9091118
doi: 10.3390/plants9091118 pubmed: 32872488 pmcid: 7570070
Knoche M, Lang A (2017) Ongoing growth challenges fruit skin integrity. Crit Rev Plant Sci 36(3):190–215. https://doi.org/10.1080/07352689.2017.1369333
doi: 10.1080/07352689.2017.1369333
Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R, Molina I, Rowland O (2014) AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J 80(2):216–229. https://doi.org/10.1111/tpj.12624
doi: 10.1111/tpj.12624 pubmed: 25060192 pmcid: 4321041
Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, Kumar PP (2020) Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiol 184(4):2199–2215. https://doi.org/10.1104/pp.20.01054
doi: 10.1104/pp.20.01054 pubmed: 32928900 pmcid: 7723105
Lara I, Belge B, Goulao LF (2014) The fruit cuticle as a modulator of postharvest quality. Postharvest Biol Technol 87:103–112. https://doi.org/10.1016/j.postharvbio.2013.08.012
doi: 10.1016/j.postharvbio.2013.08.012
Lara I, Heredia A, Domínguez E (2019) Shelf life potential and the fruit cuticle: the unexpected player. Front Plant Sci 10:770. https://doi.org/10.3389/fpls.2019.00770
doi: 10.3389/fpls.2019.00770 pubmed: 31244879 pmcid: 6581714
Lashbrooke J, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I, Zeisler V, Massalha H, Stern A, Livio Trainotti L, Schreiber L, Costa F, Aharonia A (2016) MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell 28:2097–2116. https://doi.org/10.1105/tpc.16.00490
doi: 10.1105/tpc.16.00490 pubmed: 27604696 pmcid: 5059810
Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, Park OK, Suh MC (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60(3):462–475. https://doi.org/10.1111/j.1365-313x.2009.03973.x
doi: 10.1111/j.1365-313x.2009.03973.x pubmed: 19619160
Legay S, Guerriero G, Deleruelle A, Lateur M, Evers D, Andre CM, Hausman JF (2015) Apple russeting as seen through the RNAseq lens: strong alterations in the exocarp cell wall. Plant Mol Biol 88:21–40. https://doi.org/10.1007/s11103-015-0303-4
doi: 10.1007/s11103-015-0303-4 pubmed: 25786603
Legay S, Guerriero G, Andre C, Guignard C, Cocco E, Charton S, Boutry M, Rowland O, Hausman JF (2016) MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytol 212(4):977–991. https://doi.org/10.1111/nph.14170
doi: 10.1111/nph.14170 pubmed: 27716944
Millard PS, Kragelund BB, Burow M (2019) R2R3 MYB transcription factors – functions outside the DNA-binding domain. Trends Plant Sci 24(10):934–946. https://doi.org/10.1016/j.tplants.2019.07.003
doi: 10.1016/j.tplants.2019.07.003 pubmed: 31358471
Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M (2009) Identification of an Arabidopsis feruloyl-coenzyme A transferase required for suberin synthesis. Plant Physiol 151(3):1317–1328. https://doi.org/10.1104/pp.109.144907
doi: 10.1104/pp.109.144907 pubmed: 19759341 pmcid: 2773081
Nomberg G, Marinov O, Arya GC, Manasherova E, Cohen H (2022a) The key enzymes in the suberin biosynthetic pathway in plants: An update. Plants 11:392. https://doi.org/10.3390/plants11030392
doi: 10.3390/plants11030392 pubmed: 35161373 pmcid: 8839845
Nomberg G, Marinov O, Karavani E, Manasherova E, Zelinger E, Yarden D, Cohen H (2022b) Cucumber fruit skin reticulation affects post-harvest traits. Postharvest Biol Technol 194:112071. https://doi.org/10.1016/j.postharvbio.2022.112071
doi: 10.1016/j.postharvbio.2022.112071
Pinot F, Beisson F (2011) Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J 278:195–205. https://doi.org/10.1111/j.1742-4658.2010.07948.x
doi: 10.1111/j.1742-4658.2010.07948.x pubmed: 21156024
Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13(5):236–246. https://doi.org/10.1016/j.tplants.2008.03.003
doi: 10.1016/j.tplants.2008.03.003 pubmed: 18440267
Prouse MB, Campbell MM (2012) The interaction between MYB proteins and their target DNA binding sites. BBA-Gene Regul Mech 1819(1):67–77. https://doi.org/10.1016/j.bbagrm.2011.10.010
doi: 10.1016/j.bbagrm.2011.10.010
Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era–new interest for an old polymer. Plant Sci 180(3):399–413. https://doi.org/10.1016/j.plantsci.2010.11.003
doi: 10.1016/j.plantsci.2010.11.003 pubmed: 21421386
Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009) CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol 149(2):1050–1060. https://doi.org/10.1104/pp.108.127183
doi: 10.1104/pp.108.127183 pubmed: 19109416 pmcid: 2633816
Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M (2010) A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant J 62(2):277–290. https://doi.org/10.1111/j.1365-313x.2010.04144.x
doi: 10.1111/j.1365-313x.2010.04144.x pubmed: 20088895
Shi CH, Qi BX, Wang XQ, Shen LY, Luo J, Zhang YX (2019) Proteomic analysis of the key mechanism of exocarp russet pigmentation of semi-russet pear under rainwater condition. Sci Hortic 254:178–186. https://doi.org/10.1016/j.scienta.2019.04.086
doi: 10.1016/j.scienta.2019.04.086
Shi CH, Wang XQ, Xu JF, Zhang YX, Qi B, Luo J (2021) Dissecting the molecular mechanism of russeting in sand pear (Pyrus pyrifolia Nakai) by metabolomics, transcriptomics, and proteomics. Plant J 108:1644–1661. https://doi.org/10.1111/tpj.15532
doi: 10.1111/tpj.15532 pubmed: 34623717
Shukla V, Han JP, Cleard F, Lefebvre-Legendre L, Gully K, Flis P, Berhin A, Andersen TG, Salt DE, Nawrath C (2021) Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors. Proc Natl Acad Sci USA 118(39):e2101730118. https://doi.org/10.1101/2021.01.27.428267
doi: 10.1101/2021.01.27.428267 pubmed: 34551972 pmcid: 8488582
Straube J, Chen YH, Khanal BP, Shumbusho A, Zeisler-Diehl V, Suresh K, Schreiber L, Knoche M, Debener T (2021) Russeting in apple is initiated after exposure to moisture ends: molecular and biochemical evidence. Plants 10:65. https://doi.org/10.1016/j.plaphy.2016.01.021
doi: 10.1016/j.plaphy.2016.01.021
Tanios S, Thangavel T, Eyles A, Tegg RS, Nichols DS, Corkrey R, Wilson CR (2019) Suberin deposition in potato periderm: a novel resistance mechanism against tuber greening. New Phytol 225:1273–1284. https://doi.org/10.1111/nph.16334
doi: 10.1111/nph.16334
Tully TLA, Kaushik P, O’Connor J, Bernards MA (2020) Fatty acid ω-hydroxylases of soybean: CYP86Agene expression and aliphatic suberin deposition. Bot 98(6):317–326. https://doi.org/10.1139/cjb-2019-0198
doi: 10.1139/cjb-2019-0198
Vishwanath SJ, Delude C, Domergue F, Rowland O (2015) Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep 34(4):573–586. https://doi.org/10.1007/s00299-014-1727-z
doi: 10.1007/s00299-014-1727-z pubmed: 25504271
Wang YZ, Dai MS, Cai DY, Zhang S, Shi ZB (2016) A review for the molecular research of russet/semi-russet of sand pear exocarp and their genetic characters. Sci Hortic 210:138–142. https://doi.org/10.1016/j.scienta.2016.07.019
doi: 10.1016/j.scienta.2016.07.019
Wang YZ, Dai MS, Cai DY, Shi ZB (2020) Proteome and transcriptome profile analysis reveals regulatory and stress-responsive networks in the russet fruit skin of sand pear. Horti Res 7:16. https://doi.org/10.1038/s41438-020-0242-3
doi: 10.1038/s41438-020-0242-3
Wang Y, Xu JJ, He ZF, Hu N, Luo WQ, Liu XY, Shi X, Liu TX, Jiang QQ, An PP, Liu L, Sun YL, Jetter R, Li CL, Wang ZH (2021) BdFAR4, a root-specific fatty acyl-coenzyme A reductase, is involved in fatty alcohol synthesis of root suberin polyester in Brachypodium distachyon. Plant J 106(5):1468–1483. https://doi.org/10.1111/tpj.15249
doi: 10.1111/tpj.15249 pubmed: 33768632
Wei XP, Lu WJ, Mao LC, Han XY, Wei XB, Zhao XX, Xia M, Xu CJ (2020a) ABF2 and MYB transcription factors regulate feruloyl transferase FHT involved in ABA-mediated wound suberization of kiwifruit. J Exp Bot 71(1):305–317. https://doi.org/10.1093/jxb/erz430
doi: 10.1093/jxb/erz430 pubmed: 31559426
Wei XP, Mao LC, Lu WJ, Wei XB, Han XY, Guan WL, Yang YJ, Zha M, Xu CJ, Luo ZS (2020b) Three transcription activators of ABA signaling positively regulate suberin monomer synthesis by activating cytochrome P450 CYP86A1 in kiwifruit. Front Plant Sci 10:1650. https://doi.org/10.3389/fpls.2019.01650
doi: 10.3389/fpls.2019.01650 pubmed: 31998339 pmcid: 6967411
Woolfson KN, Esfandiari M, Bernards MA (2022) Suberin biosynthesis, assembly, and regulation. Plants 11:555. https://doi.org/10.3390/plants11040555
doi: 10.3390/plants11040555 pubmed: 35214889 pmcid: 8875741
Xu HM, Liu P, Wang CH, Wu SS, Dong CQ, Lin QY, Sun WR, Huang BB, Xu MZ, Tauqeer A, Wu S (2022) Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response. Plant Physiol 190:1165–1181. https://doi.org/10.1093/plphys/kiac298
doi: 10.1093/plphys/kiac298 pubmed: 35781829
Zhang J, Zhang YF, Zhang PF, Bian YH, Liu ZY, Zhang C, Liu X, Wang CL (2021) An integrated metabolic and transcriptomic analysis reveals the mechanism through which fruit bagging alleviates exocarp semi-russeting in pear fruit. Tree Physiol 41(7):1306–1318. https://doi.org/10.1093/treephys/tpaa172
doi: 10.1093/treephys/tpaa172 pubmed: 33367887
Zeng JK, Li X, Xu Q, Chen JY, Yin XR, Ferguson IB, Chen KS (2015) EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. Plant Biotechnol J 13(9):1325–1334. https://doi.org/10.1111/pbi.12351
doi: 10.1111/pbi.12351 pubmed: 25778106
Zhang P, Wang RL, Yang XP, Ju Q, Li WQ, Lv SY, Tran LP, Xu J (2020) The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence. Plant Cell Environ 43(8):1925–1943. https://doi.org/10.1111/pce.13784
doi: 10.1111/pce.13784 pubmed: 32406163

Auteurs

Jing Zhang (J)

College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.

Zi-Yu Liu (ZY)

College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.

Yi-Fan Zhang (YF)

College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.

Chen Zhang (C)

College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.

Xi Li (X)

College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.

Xiao Liu (X)

College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.

Chun-Lei Wang (CL)

College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China. wangcl@yzu.edu.cn.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus

Perceptions of the neighbourhood food environment and food insecurity of families with children during the Covid-19 pandemic.

Irene Carolina Sousa Justiniano, Matheus Santos Cordeiro, Hillary Nascimento Coletro et al.
1.00
Humans COVID-19 Food Insecurity Cross-Sectional Studies Female
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Humans Citrus Female Male Aged

Classifications MeSH