Suppressive effect of black tea polyphenol theaflavins in a mouse model of ovalbumin-induced food allergy.

Black tea extract Diarrhea Food allergy Functional food ingredients Oxidative stress Theaflavins

Journal

Journal of natural medicines
ISSN: 1861-0293
Titre abrégé: J Nat Med
Pays: Japan
ID NLM: 101518405

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 20 12 2022
accepted: 08 02 2023
medline: 31 5 2023
pubmed: 2 3 2023
entrez: 1 3 2023
Statut: ppublish

Résumé

Food allergy is recognized as a global medical problem with increasing prevalence in recent years. Currently, the treatment of food allergy mainly involves avoidance of allergens and allergen-specific immunotherapy. Barring the spontaneous resolution of food allergy during the growth process, this disease is difficult to treat fundamentally. In recent years, the use of functional food ingredients derived from natural products has been attracting attention for their prophylactic use in food allergy. Theaflavins, i.e., black tea polyphenols, are potent antioxidants that have inhibitory effects on a variety of diseases. However, little is known about the preventive effect of theaflavins on food allergy. In this study, we designed a mouse model of food allergy and examined the effect of theaflavins using the severity of diarrhea, a symptom of food allergy, as an indicator. The administration of a black tea extract rich in theaflavins or theaflavin 1 (subgroup of theaflavins) to mice reduced the severity of diarrhea when compared with a normal diet. A reduction in malondialdehyde levels, a key marker of lipid peroxidation, was also observed. Overall, these data suggest that theaflavins may potentially inhibit food allergy by alleviating oxidative stress in the colon and can be a potential food material for prevention of food allergy.

Identifiants

pubmed: 36854953
doi: 10.1007/s11418-023-01686-x
pii: 10.1007/s11418-023-01686-x
doi:

Substances chimiques

Polyphenols 0
theaflavin 1IA46M0D13
Antioxidants 0
Tea 0
Ovalbumin 9006-59-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

604-609

Subventions

Organisme : Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED
ID : JP21am0101123
Organisme : JSPS KAKENHI
ID : JP20K11578
Organisme : JSPS KAKENHI
ID : JP20H03392
Organisme : JSPS KAKENHI
ID : JP21K06560

Informations de copyright

© 2023. The Author(s) under exclusive licence to The Japanese Society of Pharmacognosy.

Références

Sicherer SH, Sampson HA (2018) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 141:41–58. https://doi.org/10.1016/j.jaci.2017.11.003
doi: 10.1016/j.jaci.2017.11.003 pubmed: 29157945
Ganesh R, Sathiyasekeran M (2013) Food allergy in children. Indian J Pract Pediatr 15:180–188. https://doi.org/10.2500/108854181779091407
doi: 10.2500/108854181779091407
Xiong Y, Xu G, Chen M, Ma H (2022) Intestinal uptake and tolerance to food antigens. Front Immunol 13:1–10. https://doi.org/10.3389/fimmu.2022.906122
doi: 10.3389/fimmu.2022.906122
Pavić I, Kolaček S (2017) Growth of children with food allergy. Horm Res Paediatr 88:91–100. https://doi.org/10.1159/000462973
doi: 10.1159/000462973 pubmed: 28359060
Nicolaides RE, Parrish CP, Bird JA (2020) Food allergy immunotherapy with adjuvants. Immunol Allergy Clin N Am 40:149–173. https://doi.org/10.1016/j.iac.2019.09.004
doi: 10.1016/j.iac.2019.09.004
Trogen B, Jacobs S, Nowak-Wegrzyn A (2022) Early introduction of allergenic foods and the prevention of food allergy. Nutrients 14:2565. https://doi.org/10.3390/nu14132565
doi: 10.3390/nu14132565 pubmed: 35807745 pmcid: 9268235
Gosslau A, Li S, Zachariah E, Ho CT (2018) Therapeutic connection between black tea theaflavins and their benzotropolone core structure. Curr Pharmacol Reports 4:447–452. https://doi.org/10.1007/s40495-018-0157-y
doi: 10.1007/s40495-018-0157-y
de Mejia EG, Ramirez-Mares MV, Puangpraphant S (2009) Bioactive components of tea: cancer, inflammation and behavior. Brain Behav Immun 23:721–731. https://doi.org/10.1016/j.bbi.2009.02.013
doi: 10.1016/j.bbi.2009.02.013 pubmed: 19258034
Arab L, Khan F, Lam H (2013) Tea consumption and cardiovascular disease risk1–3. Am J Clin Nutr. https://doi.org/10.3945/ajcn.113.059345
doi: 10.3945/ajcn.113.059345 pubmed: 24172310
He HF (2017) Research progress on theaflavins: efficacy, formation, and preparation. Food Nutr Res. https://doi.org/10.1080/16546628.2017.1344521
doi: 10.1080/16546628.2017.1344521 pubmed: 28747864 pmcid: 5510227
Wang H, Provan GJ, Helliwell K (2000) Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci Technol 11:152–160. https://doi.org/10.1016/S0924-2244(00)00061-3
doi: 10.1016/S0924-2244(00)00061-3
Yang Z, Jie G, Dong F et al (2008) Radical-scavenging abilities and antioxidant properties of theaflavins and their gallate esters in H2O2-mediated oxidative damage system in the HPF-1 cells. Toxicol Vitr 22:1250–1256. https://doi.org/10.1016/j.tiv.2008.04.007
doi: 10.1016/j.tiv.2008.04.007
Kuroda Y, Hara Y (1999) Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res Rev Mutat Res 436:69–97. https://doi.org/10.1016/S1383-5742(98)00019-2
doi: 10.1016/S1383-5742(98)00019-2
Matsui T, Tanaka T, Tamura S et al (2007) Α-glucosidase inhibitory profile of catechins and theaflavins. J Agric Food Chem 55:99–105. https://doi.org/10.1021/jf0627672
doi: 10.1021/jf0627672 pubmed: 17199319
Glisan SL, Grove KA, Yennawar NH, Lambert JD (2017) Inhibition of pancreatic lipase by black tea theaflavins: comparative enzymology and in silico modeling studies. Food Chem 216:296–300. https://doi.org/10.1016/j.foodchem.2016.08.052
doi: 10.1016/j.foodchem.2016.08.052 pubmed: 27596423
Yoshino K, Yamashita Y, Yamazaki K et al (2011) Preventive effects of black tea theaflavins on mouse type 1 allergy induced by ovalbumin. J Technol Educ 18:9–14
National Research Council (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington. https://doi.org/10.1258/la.2012.150312
doi: 10.1258/la.2012.150312
Ishimoto K, Shimada Y, Ohno A et al (2022) Physicochemical and biochemical evaluation of amorphous solid dispersion of naringenin prepared using hot-melt extrusion. Front Nutr 9:1–12. https://doi.org/10.3389/fnut.2022.850103
doi: 10.3389/fnut.2022.850103
Kunisawa J, Arita M, Hayasaka T et al (2015) Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci Rep 5:1–8. https://doi.org/10.1038/srep09750
doi: 10.1038/srep09750
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3
doi: 10.1016/0003-2697(79)90738-3 pubmed: 36810
Baruah AM, Mahanta PK (2003) Fermentation characteristics of some assamica clones and process optimization of black tea manufacturing. J Agric Food Chem 51:6578–6588. https://doi.org/10.1021/jf030019w
doi: 10.1021/jf030019w pubmed: 14558781
Takemoto M, Takemoto H (2018) Synthesis of theaflavins and their functions. Molecules 23:1–18. https://doi.org/10.3390/molecules23040918
doi: 10.3390/molecules23040918
Singh A, Demont A, Actis-Goretta L et al (2014) Identification of epicatechin as one of the key bioactive constituents of polyphenol-enriched extracts that demonstrate an anti-allergic effect in a murine model of food allergy. Br J Nutr 112:358–368. https://doi.org/10.1017/S0007114514000877
doi: 10.1017/S0007114514000877 pubmed: 24854295
Shinozaki T, Sugiyama K, Nakazato K, Takeo T (1997) Effect of tea extracts, catechin and caffeine against type-I allergic reaction. Yakugaku Zasshi 117:448–454. https://doi.org/10.1248/yakushi1947.117.7_448
doi: 10.1248/yakushi1947.117.7_448
Shams MH, Jafari R, Eskandari N et al (2021) Anti-allergic effects of vitamin E in allergic diseases: an updated review. Int Immunopharmacol 90:107196. https://doi.org/10.1016/j.intimp.2020.107196
doi: 10.1016/j.intimp.2020.107196 pubmed: 33221170
Matsuo N, Yamada K, Shoji K et al (1997) Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship. Allergy Eur J Allergy Clin Immunol 52:58–64. https://doi.org/10.1111/j.1398-9995.1997.tb02546.x
doi: 10.1111/j.1398-9995.1997.tb02546.x

Auteurs

Kenji Ishimoto (K)

Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.

Yuma Konishi (Y)

Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Shuichi Otani (S)

Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Mitsui Norin Co. Ltd., R&D Group, 223-1 Miyabara, Fujieda, Shizuoka, 426-0133, Japan.

Soya Maeda (S)

Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Mitsui Norin Co. Ltd., R&D Group, 223-1 Miyabara, Fujieda, Shizuoka, 426-0133, Japan.

Yukio Ago (Y)

Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.

Nobumasa Hino (N)

Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Masayuki Suzuki (M)

Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Mitsui Norin Co. Ltd., R&D Group, 223-1 Miyabara, Fujieda, Shizuoka, 426-0133, Japan.

Shinsaku Nakagawa (S)

Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. nakagawa@phs.osaka-u.ac.jp.
Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. nakagawa@phs.osaka-u.ac.jp.
Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. nakagawa@phs.osaka-u.ac.jp.
Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan. nakagawa@phs.osaka-u.ac.jp.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH