Structural Characterization of the Chlorophyllide a Oxygenase (CAO) Enzyme Through an In Silico Approach.
Chlorophyll b biosynthesis
Chlorophyllide a oxygenase
Computational prediction
Micromonas pusilla
Molecular docking
Journal
Journal of molecular evolution
ISSN: 1432-1432
Titre abrégé: J Mol Evol
Pays: Germany
ID NLM: 0360051
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
23
08
2022
accepted:
16
02
2023
medline:
11
4
2023
pubmed:
4
3
2023
entrez:
3
3
2023
Statut:
ppublish
Résumé
Chlorophyllide a oxygenase (CAO) is responsible for converting chlorophyll a to chlorophyll b in a two-step oxygenation reaction. CAO belongs to the family of Rieske-mononuclear iron oxygenases. Although the structure and reaction mechanism of other Rieske monooxygenases have been described, a member of plant Rieske non-heme iron-dependent monooxygenase has not been structurally characterized. The enzymes in this family usually form a trimeric structure and electrons are transferred between the non-heme iron site and the Rieske center of the adjoining subunits. CAO is supposed to form a similar structural arrangement. However, in Mamiellales such as Micromonas and Ostreococcus, CAO is encoded by two genes where non-heme iron site and Rieske cluster localize on the distinct polypeptides. It is not clear if they can form a similar structural organization to achieve the enzymatic activity. In this study, the tertiary structures of CAO from the model plant Arabidopsis thaliana and the Prasinophyte Micromonas pusilla were predicted by deep learning-based methods, followed by energy minimization and subsequent stereochemical quality assessment of the predicted models. Furthermore, the chlorophyll a binding cavity and the interaction of ferredoxin, which is the electron donor, on the surface of Micromonas CAO were predicted. The electron transfer pathway was predicted in Micromonas CAO and the overall structure of the CAO active site was conserved even though it forms a heterodimeric complex. The structures presented in this study will serve as a basis for understanding the reaction mechanism and regulation of the plant monooxygenase family to which CAO belongs.
Identifiants
pubmed: 36869271
doi: 10.1007/s00239-023-10100-9
pii: 10.1007/s00239-023-10100-9
doi:
Substances chimiques
chlorophyll a oxygenase
EC 1.13.12.-
Chlorophyllides
0
Chlorophyll A
YF5Q9EJC8Y
Oxygenases
EC 1.13.-
Mixed Function Oxygenases
EC 1.-
Iron
E1UOL152H7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
225-235Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Ashikawa Y, Fujimoto Z, Noguchi H, Habe H, Omori T, Yamane H, Nojiri H (2006) Electron transfer complex formation between oxygenase and ferredoxin components in Rieske nonheme iron oxygenase system. Structure 14:1779
pubmed: 17161368
doi: 10.1016/j.str.2006.10.004
Baek M, Park T, Heo L, Park C, Seok C (2017) GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res 45:W320
pubmed: 28387820
pmcid: 5570155
doi: 10.1093/nar/gkx246
Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871
pubmed: 34282049
pmcid: 7612213
doi: 10.1126/science.abj8754
Bailey S, Walters R, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794
pubmed: 11678285
doi: 10.1007/s004250100556
Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N (2004) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322
pubmed: 14871869
doi: 10.1093/bioinformatics/bth070
Brimberry M, Garcia AA, Liu J, Tian J, Bridwell-Rabb J (2022) Engineering Rieske oxygenase activity one piece at a time. Curr Opin Chem Biol 72:102227
pubmed: 36410250
pmcid: 9939785
doi: 10.1016/j.cbpa.2022.102227
Bryant DA, Hunter CN, Warren MJ (2020) Biosynthesis of the modified tetrapyrroles-the pigments of life. J Biol Chem 295:6888
pubmed: 32241908
pmcid: 7242693
doi: 10.1074/jbc.REV120.006194
Bugg TD, Ramaswamy S (2008) Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations. Curr Opin Chem Biol 12:134
pubmed: 18249197
doi: 10.1016/j.cbpa.2007.12.007
Caffarri S, Croce R, Breton J, Bassi R (2001) The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J Biol Chem 276:35924
pubmed: 11454869
doi: 10.1074/jbc.M105199200
Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Ann Rev Biochem 83:317
pubmed: 24635479
doi: 10.1146/annurev-biochem-072711-162943
Christoffer C, Chen S, Bharadwaj V, Aderinwale T, Kumar V, Hormati M, Kihara D (2021) LZerD webserver for pairwise and multiple protein-protein docking. Nucleic Acids Res 49:W359
pubmed: 33963854
pmcid: 8262708
doi: 10.1093/nar/gkab336
Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511
pubmed: 8401235
pmcid: 2142462
doi: 10.1002/pro.5560020916
Costas M, Mehn MP, Jensen MP, Que L (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104:939
pubmed: 14871146
doi: 10.1021/cr020628n
Delano WL (2002) The PyMOL Molecular graphics system. http://www.pymol.org . Accessed 03 Mar 2023
D’Ordine RL, Rydel TJ, Storek MJ, Sturman EJ, Moshiri F, Bartlett RK, Brown GR, Eilers RJ, Dart C, Qi Y, Flasinski S, Franklin SJ (2009) Dicamba monooxygenase: structural insights into a dynamic Rieske oxygenase that catalyzes an exocyclic monooxygenation. J Mol Biol 392:481
pubmed: 19616009
doi: 10.1016/j.jmb.2009.07.022
Espineda CE, Linford AS, Devine D, Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:10507
pubmed: 10468639
pmcid: 17919
doi: 10.1073/pnas.96.18.10507
Ferraro DJ, Gakhar L, Ramaswamy S (2005) Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338:175
pubmed: 16168954
doi: 10.1016/j.bbrc.2005.08.222
Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J Mol Biol 342:1041
pubmed: 15342255
doi: 10.1016/j.jmb.2004.07.062
Gakhar L, Malik ZA, Allen CCR, Lipscomb DA, Larkin MJ, Ramaswamy S (2005) Structure and increased thermostability of Rhodococcus sp. Naphthalene 1,2-dioxygenase. J Bacteriol 187:7222
pubmed: 16237006
pmcid: 1272967
doi: 10.1128/JB.187.21.7222-7231.2005
Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 47:685
doi: 10.1146/annurev.arplant.47.1.685
Heo L, Lee H, Seok C (2016) GalaxyRefineComplex: refinement of protein-protein complex model structures driven by interface repacking. Sci Rep 6:32153
pubmed: 27535582
pmcid: 4989233
doi: 10.1038/srep32153
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518
pmcid: 5850222
doi: 10.1093/molbev/msx281
Jia T, Ito H, Tanaka A (2016) Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. Planta 244:1041
pubmed: 27394155
doi: 10.1007/s00425-016-2568-5
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Meth 14:587
doi: 10.1038/nmeth.4285
Kovaleva EG, Lipscomb JD (2008) Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat Chem Biol 4:186
pubmed: 18277980
pmcid: 2720164
doi: 10.1038/nchembio.71
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255
pubmed: 28079879
pmcid: 5540229
doi: 10.1038/nprot.2016.169
Kunugi M, Takabayashi A, Tanaka A (2013) Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in Micromonas. J Biol Chem 288:19330
pubmed: 23677999
pmcid: 3707637
doi: 10.1074/jbc.M113.462663
Kunugi M, Satoh S, Ihara K, Shibata K, Yamagishi Y, Kogame K, Obokata J, Takabayashi A, Tanaka A (2016) Evolution of green plants accompanied changes in light-harvesting systems. Plant Cell Physiol 57:1231
pubmed: 27057002
doi: 10.1093/pcp/pcw071
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283
doi: 10.1107/S0021889892009944
Leconte J, Benites LF, Vannier T, Wincker P, Piganeau G, Jaillon O (2020) Genome resolved biogeography of Mamiellales. Genes (Basel) 11:66
pubmed: 31936086
doi: 10.3390/genes11010066
Letunic I, Bork P (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293
pubmed: 33885785
pmcid: 8265157
doi: 10.1093/nar/gkab301
Lin Y-F, Cheng C-W, Shih C-S, Hwang J-K, Yu C-S, Lu C-H (2016) MIB: Metal ion-binding site prediction and docking server. J Chem Inf Model 56:2287
pubmed: 27976886
doi: 10.1021/acs.jcim.6b00407
Liu J, Knapp M, Jo M, Dill Z, Bridwell-Rabb J (2022) Rieske oxygenase catalyzed C–H bond functionalization reactions in chlorophyll b biosynthesis. ACS Central Science, Washington
doi: 10.1021/acscentsci.2c00058
Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83
pubmed: 1538787
doi: 10.1038/356083a0
Martins BM, Svetlitchnaia T, Dobbek H (2005) 2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe-2S] center oxidation/reduction. Structure 13:817
pubmed: 15893671
doi: 10.1016/j.str.2005.03.008
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785
pubmed: 19399780
pmcid: 2760638
doi: 10.1002/jcc.21256
Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M (2012) Characterization of mutations in Barley fch2 Encoding Chlorophyllide a oxygenase. Plant Cell Physiol 53:1232
pubmed: 22537757
doi: 10.1093/pcp/pcs062
Nagata N, Satoh S, Tanaka R, Tanaka A (2004) Domain structures of chlorophyllide a oxygenase of green plants and Prochlorothrix hollandica in relation to catalytic functions. Planta 218:1019
pubmed: 14716565
doi: 10.1007/s00425-003-1181-6
Nojiri H, Ashikawa Y, Noguchi H, Nam J-W, Urata M, Fujimoto Z, Uchimura H, Terada T, Nakamura S, Shimizu K, Yoshida T, Habe H, Omori T (2005) Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase. J Mol Biol 351:355
pubmed: 16005887
doi: 10.1016/j.jmb.2005.05.059
Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl Environ Microbiol 70:4064
pubmed: 15240284
pmcid: 444783
doi: 10.1128/AEM.70.7.4064-4072.2004
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An open chemical toolbox. J Cheminform 3:33
pubmed: 21982300
pmcid: 3198950
doi: 10.1186/1758-2946-3-33
Oster U, Tanaka R, Tanaka A, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305
pubmed: 10758481
doi: 10.1046/j.1365-313x.2000.00672.x
Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402:47
pubmed: 10573417
doi: 10.1038/46972
Parales RE, Parales JV, Gibson DT (1999) Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity. J Bacteriol 181:1831
pubmed: 10074076
pmcid: 93582
doi: 10.1128/JB.181.6.1831-1837.1999
Park T, Won J, Baek M, Seok C (2021) GalaxyHeteromer: protein heterodimer structure prediction by template-based and ab initio docking. Nucleic Acids Res 49:W237
pubmed: 34048578
pmcid: 8262733
doi: 10.1093/nar/gkab422
Partensky F, Garczarek L (2010) Prochlorococcus: advantages and limits of minimalism. Ann Rev Mar Sci 2:305
pubmed: 21141667
doi: 10.1146/annurev-marine-120308-081034
Perry C, de los Santos Emmanuel LC, Alkhalaf LM, Challis GL (2018) Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis. Nat Prod Rep 35:622
pubmed: 29651484
doi: 10.1039/C8NP00004B
Porra RJ, SchÄFer W, Cmiel E, Katheder I, Scheer H (1994) The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Eur J Biochem 219:671
pubmed: 8307032
doi: 10.1111/j.1432-1033.1994.tb19983.x
Sakuraba Y, Tanaka R, Yamasato A, Tanaka A (2009) Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. J Biol Chem 284:36689
pubmed: 19843523
pmcid: 2794783
doi: 10.1074/jbc.M109.008144
Satoh S, Tanaka A (2006) Identification of Chlorophyllide a oxygenase in the Prochlorococcus genome by a comparative genomic approach. Plant Cell Physiol 47:1622
pubmed: 17071624
doi: 10.1093/pcp/pcl026
Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci: a Publ Protein Soc 27:135
doi: 10.1002/pro.3290
Tanaka A, Tanaka R (2019) Chapter Six - The biochemistry, physiology, and evolution of the chlorophyll cycle. In: Grimm B (ed) Advances in botanical research. Academic Press, Cambridge, pp 183–212
Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719
pubmed: 9770552
pmcid: 22897
doi: 10.1073/pnas.95.21.12719
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232
pubmed: 27084950
pmcid: 4987875
doi: 10.1093/nar/gkw256
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455
pubmed: 19499576
pmcid: 3041641
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439
pubmed: 34791371
doi: 10.1093/nar/gkab1061
Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinform 10:407
doi: 10.1186/1471-2105-10-407
Vitt S, Ma K, Warkentin E, Moll J, Pierik AJ, Shima S, Ermler U (2014) The F420-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member. J Mol Biol 426:2813
pubmed: 24887099
doi: 10.1016/j.jmb.2014.05.024
Wang X, Liu L (2016) Crystal structure and catalytic mechanism of 7-Hydroxymethyl Chlorophyll a Reductase. J Biol Chem 291:13349
pubmed: 27072131
pmcid: 4933244
doi: 10.1074/jbc.M116.720342
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189
pubmed: 19151095
pmcid: 2672624
doi: 10.1093/bioinformatics/btp033
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296
pubmed: 29788355
pmcid: 6030848
doi: 10.1093/nar/gky427
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407
pubmed: 17517781
pmcid: 1933241
doi: 10.1093/nar/gkm290
Xu J, Zhang Y (2010) How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26:889
pubmed: 20164152
pmcid: 2913670
doi: 10.1093/bioinformatics/btq066
Xu Y, Wang S, Hu Q, Gao S, Ma X, Zhang W, Shen Y, Chen F, Lai L, Pei J (2018) CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res 46:W374
pubmed: 29750256
pmcid: 6031032
doi: 10.1093/nar/gky380
Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A (2016) PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32:3676
pubmed: 27503228
doi: 10.1093/bioinformatics/btw514
Yamasato A, Nagata N, Tanaka R, Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17:1585
pubmed: 15805480
pmcid: 1091776
doi: 10.1105/tpc.105.031518
Yan Y, Tao H, He J, Huang S-Y (2020) The HDOCK server for integrated protein–protein docking. Nat Protoc 15:1829
pubmed: 32269383
doi: 10.1038/s41596-020-0312-x
Yang J, Roy A, Zhang Y (2013) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588
pubmed: 23975762
pmcid: 3789548
doi: 10.1093/bioinformatics/btt447
Zheng W, Li Y, Zhang C, Zhou X, Pearce R, Bell EW, Huang X, Zhang Y (2021) Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Proteins 89:1734
pubmed: 34331351
pmcid: 8616857
doi: 10.1002/prot.26193